Objective
The evolution of multicellularity allowed specialization of cells into functions that support rather than cause propagation. While yielding immense gain of function, the organisation of these somatic cells into tissues and organs required novel cell-cell signalling systems. We seek to identify the genetic changes that caused transitions to multicellularity and enabled cell specialization. We use genetically tractable Dictyostelia with multicellular structures that contain from 1 to 5 cell-types to address these fundamental questions. Dictyostelia evolved from unicellular Amoebozoa and are subdivided into 4 major groups, with most novel cell-types appearing in group 4. We found that gene expression patterns changed most frequently at the transition between groups 3 and 4, and that across groups ~10% of genes were alternatively spliced in the 5’UTR, indicative of promoter elaboration. Among known genes essential for multicellular development, those involved in intracellular signal processing were mostly conserved between Dictyostelia and unicellular Amoebozoa, while those encoding exposed and secreted proteins (ESPs) were unique to Dictyostelia or groups within Dictyostelia. Starting from a hypothesis that diversification of ESPs and gene regulatory mechanisms are major drivers of multicellular evolution, we will place unicellular relatives of Dictyostelia under selection to induce multicellularity, establish which genes are most changed in evolved populations and whether this involves ESP families that are also most changed in Dictyostelia. We will overexpress altered genes in unicellular forms to assess whether this induces multicellularity. We will retrace evolution of cell specialization by lineage analysis and phenotyping and seek correlations between cell-type innovation and alternative splice events and with emergence of novel signalling genes. Causality will be assessed by replacement of genes or promoters with ancestral forms in evolved species and vice versa
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences cell biology
- natural sciences biological sciences genetics mutation
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences genetics genomes
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
DD1 4HN Dundee
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.