Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Science and applications of random polymer fiber lasers

Objectif

As a new type of light source, random lasers have attracted many attentions. The non-directional and high threshold characters of the traditional RL systems have largely limited their application. The effect of one-dimensional confinement on the lasing properties of a classical random laser system has obtained, bringing about the birth of random fiber lasers with low threshold and directionality based on the stimulated emission in the disorder system. Laterly, the new random fiber laser, based on a Rayleigh scattering amplified via the Raman effect in the silica optical fiber without a cavity formed only by a random distributed feedback, have been reported. However, the backscattering coefficient of silica optical fiber is very low, which induces high pump threshold and long fiber length. Interestingly, optical fibers with two merits come into my research points in the random fiber lasers: (1) high Rayleigh backscattering coefficient; (2) high negative thermo-optical coefficient fiber. Therefore, the new polymer fiber random laser will be greatly to enhance the efficiency and tunable of random lasing. These studies will provide scientific and technical evidences and pave the way for better random fiber laser.

Régime de financement

MSCA-IF-EF-ST - Standard EF

Coordinateur

ASTON UNIVERSITY
Contribution nette de l'UE
€ 195 454,80
Adresse
ASTON TRIANGLE
B4 7ET Birmingham
Royaume-Uni

Voir sur la carte

Région
West Midlands (England) West Midlands Birmingham
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 195 454,80