Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nanoscale Vertical Cavity Surface Emitting Laser and its Arrays

Objective

Significant advances are needed to improve the speed and efficiency of future communication and computing systems. Photonic interconnect components are the only solution to offer both high speed and low power consumption. To this end, vertical-cavity surface-emitting lasers (VCSELs) have been widely deployed as optical interconnects in the last two decades. Even though the current VCSEL technology has been very successful, its processing approach has been proven to be particularly challenging for miniaturization, it reduces the reliability for small lasers and its high thermal resistance substantially degrades the lasers’ performance. This project addresses all these bottlenecks by focusing on the development of a nanoscale VCSEL (NOVEL) device for ultra-low threshold, energy efficient and ultra-fast operation for future optical interconnects and light sources.
The driving idea of this proposal is based on using a lithographically defined laser concept to develop a novel growth and fabrication process for GaAs-based VCSELs. This will employ buried electrical- and optical-confinement method to provide us with a unique opportunity to scale the cavity down to 500 nm diameter to demonstrate the viability and performance of the NOVEL device. Additionally, this research proposal aims to investigate the potential of NOVEL array architectures for applications in sensing and innovative high beam quality lasers. This project is expected to have a strong impact both in academia and industry as it will open the way for great flexibility in the design of VCSELs and nanolasers with high reliability essential for commercialization of research. The NOVEL devices with their fundamentally new capabilities hold special promise in a wide range of scientific disciplines including optical communication, computer science, quantum electrodynamics, laser physics, on-chip nanophotonics and biosensing.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

BILKENT UNIVERSITESI ULUSAL NANOTEKNOLOJI ARASTIRMA MERKEZI - UNAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 98 653,50
Address
ULUSAL NANOTEKNOLOJI ARASTIRMA MERKEZI
06800 ANKARA
Türkiye

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 98 653,50

Participants (1)

My booklet 0 0