Objective
Among the main goals of Intelligent Transportation Systems are (i) safety: reducing threats encountered due to human impact, and (ii) efficiency: providing transportation opportunities in an ecologically and economically sustainable way. Self-driving vehicles (SDV) have the potential to achieve both goals, for which localization (i.e. the determination of the positon and velocity of the vehicle) is of key importance. Localization is challenging due to the variety of conditions (weather, clutter, obstructions) that may impede different sensors, as well as the strict latency requirements. Accurate and fast localization is a necessity for providing crash-safe high-speed SDVs. Furthermore, reducing energy costs introduced by the continuous localization process is required for reducing the frequency to charge an SDV. Current SDV localization technology is insufficient in meeting these three performance measures at the same time, requiring a different approach for high-speed SDVs. This project proposes a high-sensitive fast green relative localization system, called as GREENLOC, which obtains and shares the relative location of surrounding vehicles and road-side units by ultra-wideband cross-layer communications in a multi-hop vehicular ad-hoc network. GREENLOC is the first localization system, which enables crash-safe SDVs driving not only on highways close to speed limits, but also in congested low-speed traffic. Moreover, GREENLOC is the first localization method that works accurately even in difficult weather conditions. This project has the potential to shift Europe forward in the international competitive race of SDVs, making crash-safe high-speed SDVs possible, which in turn has the potential to solve the traffic congestion problem. Besides, this fellowship is an excellent opportunity for the experienced researcher, who is enthusiastic about realizing her idea in an international research environment after a long period of parental leave dedicated to her family.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering automotive engineering autonomous vehicles
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences physical sciences astronomy planetary sciences planets
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radar
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.