Objective
At present, OLED technology is expected to be practically applied to flat panel displays and solid state lighting sources because of its unique characteristics of low-cost processing, flexibility, and low power consumption. Till date, a large number of fluorescent and phosphorescent materials have been developed to improve the electroluminescence (EL) efficiency of OLEDs. As a result, highly durable and practically applicable OLEDs using these materials have been realized. However, the internal quantum efficiency of OLEDs based on fluorescent materials is only 25% because of the limit imposed by the electron spin-statistics under electrical excitation. In contrast, OLEDs using phosphorescent materials based on luminescence from the triplet state can achieve 100% internal quantum efficiency. Recently, an alternative realistic approach, called thermally activated delayed fluorescence (TADF), has been established to obtain ultimate 100% internal EL quantum efficiency in organic light-emitting diodes (OLEDs). But owing to rather a long transient lifetime of the triplet excited states, high efficiency roll-off and low operational stability at high current density are pertaining concerns in TADF based OLEDs. To address these challenges, the present state-of-the-art TADF-OLED technology uses a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter in a host matrix, called TADF assisted fluorescence (TAF-OLED). However, TAF-OLED approach has several inherent technical challenges associated with device physics, fabrication and cost. Through this research proposal we present a more simplified and realistic approach, called TADF hosted fluorescence (THF), to enhance the performance and operational stability by using TADF material as host material and fluorescent molecule as end emitter eliminating the need of external host matrix thus mitigate the technical issues associated with TAF-OLEDs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences chemical sciences inorganic chemistry halogens
- engineering and technology materials engineering liquid crystals
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
KY16 9AJ ST ANDREWS
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.