Objective
Patients with chronic inflammatory lung diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD) have a higher prevalence of respiratory infections. These infections accelerate disease progression and are associated with substantial morbidity and (especially in COPD) even mortality. Recent studies show that the airway microbiome of patients with asthma and COPD is different from that of healthy subjects. In murine lungs this has been shown to promote airway inflammation and loss of lung function. To this point it is unclear how changes in microbiome composition contribute to susceptibility for respiratory infections. Currently, treatment of patients with asthma and COPD is limited to symptom reduction and prevention of disease progression and hampered by the large amount of patients resistant to corticosteroid treatment. Understanding why these patients have an altered microbiome and increased susceptibility to respiratory infections is therefore pivotal to develop more effective healthcare strategies. Studies on host-microbiome interactions are mostly performed in murine models of airway diseases. Unfortunately, these models often fail to accurately reflect human disease. However, the recent development of Organ-on-a-Chip technology has effectively recapitulated many features of the modelled organ, thereby adding a level of complexity to cell cultures that is urgently needed. In contrast to existing airway epithelial cell cultures, these models contain several cell types, cultured at the air-liquid interface under a constant flow of air and nutrients while exposed to mechanical stress. However, also these cultures still lack an essential component of the airways: the airway microbiome. Therefore, the work described in this proposal aims to create an innovative human state-of-the-art Airway-on-Chip microbiome model to investigate the interaction of the airway epithelium with the microbiome and how this is linked to susceptibility for infection.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences clinical medicine pneumology asthma
- social sciences sociology demography mortality
- natural sciences biological sciences microbiology bacteriology
- medical and health sciences health sciences inflammatory diseases
- engineering and technology other engineering and technologies microtechnology organ on a chip
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2333 ZA Leiden
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.