Objective The key objective of this project is the development of innovative hybrid complexes for oxidative catalysis of pharmaceutically relevant functional groups (e.g. alcohols, amines, olefins), by combining the beneficial properties of triazolylidine N-heterocyclic carbenes and carbohydrates for synergistic catalysis and molecular recognition, ensuring site-specific bind making and breaking processes and tailored delivery. A range of novel carbohydrate-functionalised NHC complexes (e.g. with Ru(II) and Ir(III)) will be synthesised for these purposes and relationships between carbohydrate structure/geometry and catalytic activity probed, complementing experimental approaches with computational insight.NHCs are synthetically versatile and have been demonstrated to have beneficial properties as ligands for catalysis. Triazolylidine NHCs are accessible via modular 'click' chemistry and readiliy functionalised, but not as widely explored as other classes of related compounds. Functionalising carbenes with carbohydrates is practically unknown in the literature despite many advantages such derivatives would possess, including well-defined geometry, rich hydrogen bonding and proton-shuffling interactions, recognition by biological receptors (providing the opportunity for developing NHC-based metalloenzyme mimics through interdisciplinary collaboration) and also chirality (allowing for enantioselectivity). The candidate has synthetic experience matching the project and will benefit from the specific training activities within the host group (who have vast NHC experience), mobility and change of topic to achieve research maturity.Deliverables will include: 1) New catalysts for high-turnover oxidation of pharmaceutically relevant substrates 2) Innovative metalloenzyme mimics based on NHCs embedded in proteins' carbohydrate-receptor sites. Fields of science natural scienceschemical sciencesorganic chemistryketonesnatural sciencesbiological sciencesbiochemistrybiomoleculescarbohydratesnatural scienceschemical sciencesorganic chemistryalcoholsnatural scienceschemical sciencescatalysisnatural scienceschemical sciencesorganic chemistryamines Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator UNIVERSITAET BERN Net EU contribution € 175 419,60 Address Hochschulstrasse 6 3012 Bern Switzerland See on map Region Schweiz/Suisse/Svizzera Espace Mittelland Bern / Berne Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00