Objective Implantable neural recording devices are being used by neuroscientists and neurosurgeons for monitoring the behaviour of particular parts of the brain. With the advancement of microelectronics manufacturing processes, wireless multi-channel neural recording systems have become available during the last decade. However, the capabilities of neural recording implants are still limited by their power density in order not to harm the surrounding tissue by heat generation, and by their total power consumption which limits the operational longevity of the implant. If the operational capabilities and longevity of the neural recording implants are to be improved, new methods of power consumption reduction are required.I will address the power consumption reduction problem in a Marie Skłodowska-Curie European Fellowship with Prof. Serdijn at the Dept. of Microelectronics of TU Delft. I will try to solve the problem by researching asynchronous time-domain signal processing and by creating a generalized implementation framework for the time-domain signal processing applications. During the course of the project, I will be able to collaborate with experts in biomedical circuits, signal processing, and microfabrication to conclude this research project successfully. The proposed research will result in a working prototype ultra-low power asynchronous time-domain wireless neural recording chip, and at least three peer-reviewed research articles will be published.Undertaking this research along with formal training and mentoring will enhance my academic profile, scientific experience, and expertise in bioelectronics. The proposed research is in line with the scientific aims of EU to improve lifelong health and wellbeing of all. By the successful completion of the project, new methodologies for power reduction in neural implants will be available for use by both academic and industrial entities. Fields of science engineering and technologymechanical engineeringmanufacturing engineeringengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processingnatural sciencesphysical scienceselectromagnetism and electronicsmicroelectronicsengineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologymedical and health sciencesmedical biotechnologyimplants Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF-EF-CAR - CAR – Career Restart panel Coordinator TECHNISCHE UNIVERSITEIT DELFT Net EU contribution € 151 798,90 Address Stevinweg 1 2628 CN Delft Netherlands See on map Region West-Nederland Zuid-Holland Delft en Westland Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00