Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

A combined in vitro and in vivo approach to dissect biochemical network evolution.

Objective

How do organisms evolve? I propose to study how biochemical networks reorganize during evolution without compromising fitness. This is a complex problem: firstly, it is hard to know if a mutation increased fitness because this depends on the environment it arose in, which is typically unknown. Secondly, it is hard to find out how adaptive mutations improve fitness, because in cells, all biochemical networks are connected. I will reduce the complexity by two approaches, focused on symmetry-breaking in budding yeast, a functionally conserved process, which is the first step for polarity establishment and essential for proliferation.
First, I will study how adaptive mutations improve fitness in yeast cells, which are evolved after the deletion of an important symmetry-breaking gene. I will use fluorescent live-cell microscopy of polarisation markers to measure fitness, defined as the rate of symmetry breaking. I will combine my data with a kinetic mathematical model to determine how specific network structures facilitate evolutionary network reorganisation.
Second, to test predicted network structures, I will build minimal evolvable networks for symmetry breaking in vitro. In my definition of such a network, all of the components are essential for either fitness or evolvability. I will encapsulate the necessary proteins in emulsion droplets to form a functional evolvable network and use fluorescence microscopy to measure its fitness (the rate of a single protein-spot formation on a droplet membrane) and evolvability (the number of accessible neutral or adaptive mutations in the one-step mutational landscape of the network). Next, I will study how increasing the number of components affects the network’s evolvability and fitness.
This research will explain how proteins essential in one species have been lost in closely related species. My expertise with in vitro systems, modelling, biophysics and evolution makes me uniquely qualified for this ambitious project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-STG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0