Objective
It is a basic textbook notion that the plasma membranes of virtually all organisms display an asymmetric lipid distribution between inner and outer leaflets far removed from thermodynamic equilibrium. As a fundamental biological principle, lipid asymmetry has been linked to numerous cellular processes. However, a clear mechanistic justification for the continued existence of lipid asymmetry throughout evolution has yet to be established. We propose here that lipid asymmetry serves as a store of potential energy that is used to fuel energy-intense membrane remodelling and signalling events for instance during membrane fusion and fission. This implies that rapid, local changes of trans-membrane lipid distribution rather than a continuously maintained out-of-equilibrium situation are crucial for cellular function. Consequently, new methods for quantifying the kinetics of lipid trans-bilayer movement are required, as traditional approaches are mostly suited for analysing quasi-steady-state conditions. Addressing this need, we will develop and employ novel photochemical lipid probes and lipid biosensors to quantify localized trans-bilayer lipid movement. We will use these tools for identifying yet unknown protein components of the lipid asymmetry regulating machinery and analyse their function with regard to membrane dynamics and signalling in cell motility. Focussing on cell motility enables targeted chemical and genetic perturbations while monitoring lipid dynamics on timescales and in membrane structures that are well suited for light microscopy. Ultimately, we aim to reconstitute lipid asymmetry as a driving force for membrane remodelling in vitro. We expect that our work will break new ground in explaining one of the least understood features of the plasma membrane and pave the way for a new, dynamic membrane model. Since the plasma membrane serves as the major signalling hub, this will have impact in almost every area of the life sciences.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences biochemistry biomolecules lipids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.