Objective
Fundamental material properties become highly susceptible to external perturbations in low dimensions. This presents tremendous new opportunities for manipulating the behavior of novel 2D layered materials and ultimately achieving unprecedented control over their performance when integrated into highly specific functional devices. However, strategies that enable such control are sorely lacking to date and remain an outstanding challenge for the materials science community. Progress here requires of a comprehensive microscopic picture of the fundamental properties of 2D materials in clear connection to their macroscopic behavior, a knowledge that is still missing due to the lack of experimental techniques that simultaneously probe multiple length regimes.
The main objective of the proposed research is to demonstrate control over the electronic ground states of 2D materials via external strain and electromagnetic fields to build links of applicability for signal processing in electromechanical nanodevices. We will focus on 2D correlated materials exhibiting collective electronic phases such as superconductivity, which respond dramatically to external perturbations. The project aims to understand the interplay between these external stimuli and microscopic electronic phases, and to unambiguously correlate them with mesoscopic electrical transport and mechanical response. This project comprises three research thrusts: (i) Development of new instrumentation that provides a direct way to correlate atomic-scale and mesoscopic properties of materials, and to establish links between (ii) the electrical conductivity and (iii) the mechanical response of 2D correlated materials with their atomic-scale structure and stimulus-dependent electronic phase diagram. This project has the potential to transform this field by providing new pathways to control the behavior of layered nanostructures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics electromagnetism
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20018 Donostia San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.