Objective
Laser Ablation (LA) was extensively investigated for its benefits as minimally invasive thermal therapy for tumor. Despite the LA pros as potential alternative to surgical resection (e.g. use of small fiber optics, echo-endoscope procedures and image-guidance without artifact), the lack of tools for safe and patient-specific treatment restrained its clinical use. LASER OPTIMAL offers a renaissance to LA for the practical management of challenging tumors (e.g. pancreatic cancer): it investigates and develops integrated solutions to achieve an effective and selective LA, that thermally destroys the whole tumor mass, while spearing the normal tissue around. The excellent ambition of LASER OPTIMAL is to achieve and merge: a) biocompatible nanoparticles (BNPs) injected in the tumor, to enhance the selective absorption of laser light; b) patient-specific anatomy of tumor and its surrounding, extracted from clinical images, to retrieve the optimal laser settings; c) accurate, fast and real-time heat-transfer model to simulate laser-tissue-BNPs interaction, predict and visualize the treatment dynamics; d) real-time temperature measurement system to monitor LA effects, account for unpredictable physiological events and tune the settings (closed-loop). The design of ex vivo and in vivo animal tests allows assessing the system performances and driving the possible workflow re-design. Finally, human trials are envisaged to prove the significant impact of the LASER OPTIMAL paradigm. The collaboration of researchers, engineers and clinicians will drive the use of this innovative strategy in clinical routine. The research on the patient-specific system for the mini-invasive tumors removal, and the ground-breaking insights on clinical use of BNPs will strongly impact on EU healthcare system and society, by creating a novel product. This paradigm is also embeddable in existing system of industrial partner, extendable to other procedures, thus able to encourage a dedicated market.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology nanotechnology nano-materials
- medical and health sciences clinical medicine oncology pancreatic cancer
- natural sciences physical sciences optics fibre optics
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.