Objective
I seek to develop new ferroelectrics based on metal-organic frameworks with dipolar rotors. Ferroelectrics are targeted to be used as physically flexible memories and mechanical energy harvesters for biocompatible sensors and implantable monitoring devices.
As ferroelectrics can store and switch their polarity, they can be used as memories. Via the piezoelectric effect, they can harvest mechanical vibrations. The materials most compatible with flexible substrates, are soft matter materials. However, these so far don’t meet the requirements. Especially lacking is a combination of i) polarisation stability, ii) a sufficiently low energy barrier for polarisation switching and iii) fast switching. As energy harvesters, soft matter materials are hampered by low piezoelectric coefficients.
The main objective of this proposal is rational design of ferroelectrics by obtaining a fundamental understanding of the relation between structure and properties. I will achieve this by uniquely synthesizing polar rotors into 3D crystalline scaffolds that allow to alter the rotors’ nano-environement. I will achieve this via polar ligands in metal-organic frameworks (MOFs). The variability of MOFs allows to tune the nature of the hindrance towards rotation of the polar rotors. The tuneable flexibility allows to regulate the energy harvesting efficiency. Moreover, MOFs have already shown potential as biocompatible materials that can be integrated on physically flexible substrates.
The research consists of i) synthesis of polar rotor MOFs with targeted variations, ii) reliable characterisation and computational modelling of the electronic properties, iii) nanoscopic insight in the switching dynamics. The approach allows to understand how ferro- and piezoelectricity are related to the materials’ structure, and hence to develop materials with exceptional performance. My recent observation of the ferroelectric behaviour of a nitrofunctionalised MOF is the basis for this proposal.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics soft matter physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering piezoelectrics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.