Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

NOvel Decision Support tool for Evaluating Strategic Big Data investments in Transport and Intelligent Mobility Services

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Data governance and institutional issues (se abrirá en una nueva ventana)

A report on big data governance and institutional issues.

Big Data and emerging transportation challenges (se abrirá en una nueva ventana)

A report describing the research challenges related to big data technologies and methods for the transport sector.

Exploitation Plan (se abrirá en una nueva ventana)

This deliverable will report the activities for exploiting the research results of the project after the project’s life time.

Big Data implementation context in transport (se abrirá en una nueva ventana)

A report describing the review and analysis of the Big Data investments and services

Data Benefit Analysis and Impact Assessment Methodologies (IAM) for appraising big data solution in transport (se abrirá en una nueva ventana)

This deliverable will consist of the Data Benefit Analysis and the Impact Assessment Methodology for the evaluation of investments in big data to improve management and optimization of transport systems and networks.

Policy briefs (se abrirá en una nueva ventana)

Four targeted (4) policy briefs by the end of the project

Big Data in Transport Library (se abrirá en una nueva ventana)

A report with all the use cases identified in NOESIS

Dissemination , communication and exploitation plan (se abrirá en una nueva ventana)

A report on planned dissemination, communication and exploitation activities.

Suitability of business and organizational models for the successful implementation of big data in transport solutions (se abrirá en una nueva ventana)

This deliverable will provide a set of recommendations for the right implementation of successful business models for using of big data for transport. The analysis will make recommendations depending on the freight vs. passenger transport and the specific characteristic of each transport mode, or the interconnection of different transport modes.

Handbook on Key Lessons Learnt and Transferable Practices (se abrirá en una nueva ventana)

A report on the key lessons learns and best practices derived from the use cases analysis.

Learning Framework methodology and architecture (se abrirá en una nueva ventana)

A report describing the Learning Framework methodology and architecture of NOESIS.

Technological and policy roadmaps (se abrirá en una nueva ventana)

This deliverable will produce two coordinated roadmaps: one for the implementation of technological solutions and the other one for policy measures aimed at facilitating the use of big data to public agencies and transport companies.

Development and validation of the NOESIS Decision Support tool (DST) (se abrirá en una nueva ventana)

A report describing the development and validation of the NOESIS Decision Support tool (DST)

Summary to Practitioners on Laws, Regulations, and Directives on Data Privacy, Security and Openness (se abrirá en una nueva ventana)

A Report summarizing all Big Data related Laws, Regulations, and Directives related to transport.

Publicaciones

MONGODB DATABASES IN BIG DATA APPLICATIONS IN TRANSPORTATION INDUSTRY (se abrirá en una nueva ventana)

Autores: Janković, S., S. Mladenović, S. Zdravković, S. Vesković, and A. Uzelac,
Publicado en: "Second International Conference ""Transport for Today's Society""", 2019, ISBN 9789-989786778
Editor: Faculty of Technical Sciences Bitola
DOI: 10.20544/tts2018.p02

SMART TRANSPORTATION PLATFORM FOR BIG DATA ANALYTICS AND INTERCONNECTIVITY

Autores: Nandor Verba, Kuo-Ming Chao, Soizic Linford, Eleni Anoyrkati
Publicado en: Proceedings of the Fourth International Conference on Traffic and Transport Engineering, Edición Belgrade 2018, 2018, Página(s) 232-238, ISBN 978-86-916153-4-5
Editor: City Net Scientific Research Center Ltd. Belgrade

Time series classification using imbalanced learning for real-time safety assessment

Autores: Katrakazas C., Antoniou C., Yannis G.
Publicado en: Transportation Research Board (TRB), Edición Proceedings of the Transportation Research Board (TRB) 98th Annual Meeting,, 2019
Editor: TRB

Data Analysis on Big Data Applications with Small Samples and Incomplete Information (se abrirá en una nueva ventana)

Autores: Soizic Linford, Benjamin Bogdanovic, Kuo-Ming Chao, Sladana Jankovic, Vladislav Maras, Mirjana Bugarinovic, Ilias Trochidis
Publicado en: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2019, Página(s) 146-151, ISBN 978-1-7281-0350-1
Editor: IEEE
DOI: 10.1109/cscwd.2019.8791927

Schema on read modeling approach as a basis of big data analytics integration in EIS (se abrirá en una nueva ventana)

Autores: Slađana Janković, Snežana Mladenović, Dušan Mladenović, Slavko Vesković, Draženko Glavić
Publicado en: Enterprise Information Systems, Edición 12/8-9, 2018, Página(s) 1180-1201, ISSN 1751-7575
Editor: Taylor & Francis
DOI: 10.1080/17517575.2018.1462404

CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey (se abrirá en una nueva ventana)

Autores: Xiang Fei, Nazaraf Shah, Nandor Verba, Kuo-Ming Chao, Victor Sanchez-Anguix, Jacek Lewandowski, Anne James, Zahid Usman
Publicado en: Future Generation Computer Systems, Edición 90, 2019, Página(s) 435-450, ISSN 0167-739X
Editor: Elsevier BV
DOI: 10.1016/j.future.2018.06.042

Dynamic fine-tuning stacked auto-encoder neural network for weather forecast (se abrirá en una nueva ventana)

Autores: Szu-Yin Lin, Chi-Chun Chiang, Jung-Bin Li, Zih-Siang Hung, Kuo-Ming Chao
Publicado en: Future Generation Computer Systems, Edición 89, 2018, Página(s) 446-454, ISSN 0167-739X
Editor: Elsevier BV
DOI: 10.1016/j.future.2018.06.052

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0