Objective
Real-world listening involves making sense of the numerous competing sound sources that exist around us. The neuro-computational challenge faced by the brain is to reconstruct these sources from the composite waveform that arrives at the ear; a process known as auditory scene analysis. While young normal hearing listeners can parse an auditory scene with ease, the neural mechanisms that allow the brain to do this are unknown – and we are not yet able to recreate them with digital technology. Hearing loss, aging, impairments in central auditory processing, or an inability to appropriately engage attentional mechanisms can negatively impact the ability to listen in complex and noisy situations and an understanding of how the healthy brain organizes a sound mixture into perceptual sources may guide rehabilitative strategies targeting these problems.
While functional imaging studies in humans highlight a network of brain regions that support auditory scene analysis, little is known about the cellular and circuit based mechanisms that operate within these brain networks. A critical barrier to advancing our understanding of how the brain solves the challenge of scene analysis has been a failure to combine behavioural testing, which provides a crucial measure of how any given sound mixture is perceived, with methods to record and manipulate neuronal activity in animal models. Here, I propose to use a novel behavioural paradigm in conjunction with high-channel count electrophysiological recordings and optogenetic manipulation to elucidate how auditory cortex, prefrontal cortex and hippocampus enable scene analysis during active listening. These methods will allow us to record single cell activity from a number of brain regions more typical of functional imaging studies in order to understand how processing within each area, and the interactions between these areas, underpins auditory scene analysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC1E 6BT LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.