Objective
Observing hydrogen (H) in matter is a formidable challenge. Despite being ubiquitous in nature, it is elusive
to scientific scrutiny like no other element. It is often portrayed as either a blessing or a curse. Certainly, it is
a prime candidate for producing low-carbon emission power. But no less important is the effect of hydrogen
embrittlement which has resulted in many catastrophic failures of engineering alloys.
In aid of this, SHINE will realise multiple ambitions. It will facilitate the direct imaging and quantification of
H atoms in candidate metallic alloys and metal-organic frameworks for gaseous storage, allow the discovery
of new solid-state hydrides with controlled release, and help the improvement of fuel cell materials for
energy generation. All these applications have relevance to a ‘low-carbon-emission economy’ that humanity
must develop in the 21st century.
SHINE will exploit a novel and entirely unique infrastructure, designed and currently implemented in the
PI’s group. It will directly provide three-dimensional hydrogen mapping at the near-atomic scale. By
connecting and relating this fundamental knowledge and observed physical properties, we will enable
unprecedented precision in the prediction of material behaviour and so resolve to unlock control over the
behaviour of hydrogen in such materials.
Atom probe tomography will be the principal method of a correlative microscopy and spectroscopy approach
to investigate materials where precise knowledge of the distribution of H is crucial. Informed by
experimental data, modelling and simulations will provide a mechanistic understanding of the behaviour of
H in materials. Novel hardware and data-treatment approaches will be developed to maximise data quality
and provide new insights of the behaviour of H in the complex and dynamic microstructures of engineering
materials, thereby allowing us to devise manufacturing strategies to enhance their performance and
durability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- engineering and technology environmental engineering energy and fuels fuel cells
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
40237 DUSSELDORF
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.