Objective
Over the past two decades, regression discontinuity (RD) designs have become one of empirical economics' most popular strategies for estimating causal effects from observational data. In such designs, units are assigned to the treatment group if and only if a special covariate, or running variable, falls above a known cutoff value. Under mild conditions, those units close to the cutoff are as good as randomly assigned to receive the treatment, which provides a simple and transparent source of identification of the treatment's causal effect.
This project extends the range of methodological tools available to applied researchers working with data from RD designs. It is divided into three parts. The first part develops methods for incorporating covariates and group structures into the analysis of RD designs by adapting modern machine learning methods and empirical Bayes approaches. The second part considers RD designs with a discrete running variable. It shows that current state-of-the-art inference procedures are likely to be misleading in such settings, and develops new confidence intervals for causal effects. The third part develops methods for estimation and inference that account for manipulation in RD designs. Here manipulation refers to any strategic action taken by the actors within the respective institutional context that leads to observational units on different sides of the cutoff being non-comparable. The part develops a general framework for manipulation with corresponding nonparametric methods for estimation and inference, and considers various extensions.
Given the huge popularity of RD designs, and the proposal's focus on practical methods, this project has the potential to have a sizable impact on empirical economic research in a number of policy relevant areas, including education and public finance; but also on other branches of science where researchers commonly work with observational data, such as sociology or epidemiology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences sociology
- social sciences economics and business economics
- medical and health sciences health sciences public health epidemiology
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
68161 MANNHEIM
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.