Objective
Building fuel cells, electrolyzers or photoelectrochemical cells based on water (photo)electrolysis is extremely challenging. One origin of this challenge is the complexity of the underlying physical chemistry. Most such devices require transfer of electrons between solid(s) and water and thus building the best possible devices requires understanding the link between transient changes in bulk solid electronic structure, interfacial electronic structure and interfacial chemistry. Essentially all existing approaches address only part of this picture: e.g. they only probe electronic structure (optical absorption), or extracted current or provide elemental insight but are insensitive to the presence of hydrogen (x-ray absorption).
In SOLWET, I will address this gap using interface-specific optical spectroscopies, in the visible and infrared, to probe interfacial electronic and vibrational transitions and their coupling. By combining these probes with an additional intense laser pulse I will watch (photo)electrolysis of water in real time as it happens. In particular, I will directly probe the coupling of transiently perturbed solid electronic structure to interfacial electronic structure and watch how this perturbation drives water’s oxidation, for a hematite photoanode, or reduction, for a Pt cathode, through the interfacial vibrational response. By describing how these couplings change with solid modification (e.g. an alumina overlayer on hematite) or changes in aqueous solution composition (e.g. changing the pH in contact with Pt) the results of SOLWET will offer the physical insights necessary to build the best possible hematite and Pt containing photoelectrochemical devices. Moreover, because the novel all-optical tools developed in SOLWET are not system-specific, the approach demonstrated in this work will be widely applicable.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology environmental engineering energy and fuels
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
45141 ESSEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.