Objective
Computing is changing from living on our desktops and in dedicated devices to being everywhere. In phones, sensors, appliances, and robots – computers (from now on devices) are everywhere and affecting all aspects of our lives. The techniques to make them safe and reliable are investigated and are starting to emerge and consolidate. However, these techniques enable devices to work in isolation or co-exist. We currently do not have techniques that enable development of real autonomous collaboration between devices. Such techniques will revolutionize all usage of devices and, as consequence, our lives. Manufacturing, supply chain, transportation, infrastructures, and earth- and space exploration would all transform using techniques that enable development of collaborating devices.
When considering isolated (and co-existing) devices, reactive synthesis – automatic production of plans from high level specification – is emerging as a viable tool for the development of robots and reactive software. This is especially important in the context of safety-critical systems, where assurances are required and systems need to have guarantees on performance. The techniques that are developed today to support robust, assured, reliable, and adaptive devices rely on a major change in focus of reactive synthesis. The revolution of correct-by-construction systems from specifications is occurring and is being pushed forward.
However, to take this approach forward to work also for real collaboration between devices the theoretical frameworks that will enable distributed synthesis are required. Such foundations will enable the correct-by-construction revolution to unleash its potential and allow a multiplicative increase of utility by cooperative computation.
d-SynMA will take distributed synthesis to this new frontier by considering novel interaction and communication concepts that would create an adaptable framework of correct-by-construction application of collaborating devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- social sciences political sciences political transitions revolutions
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
405 30 Goeteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.