Objective
The aim of this project is to develop and to demonstrate a novel theoretical framework devoted to rationalizing the formulation of composite electrodes containing next-generation material chemistries for high energy density secondary batteries. The framework will be established through the combination of discrete particle and continuum mathematical models within a multiscale computational workflow integrating the individual models and mimicking the different steps along the electrode fabrication process, including slurry preparation, drying and calendering. Strongly complemented by dedicated experimental characterizations which are devoted to its validation, the goal of this framework is to provide insights about the impacts of material properties and fabrication process parameters on the electrode mesostructures and their corresponding correlation to the resulting electrochemical performance. It targets self-organization mechanisms of material mixtures in slurries by considering the interactions between the active and conductive materials, solvent, binders and dispersants and the relationship between the materials properties such as surface chemistry and wettability. Optimal electrode formulation, fabrication process and the arising electrode mesostructure can then be achieved. Additionally, the framework will be integrated into an online and open access infrastructure, allowing predictive direct and reverse engineering for optimized electrode designs to attain high quality electrochemical performances. Through the demonstration of a multidisciplinary, flexible and transferable framework, this project has tremendous potential to provide insights leading to proposals of new and highly efficient industrial techniques for the fabrication of cheaper and reliable next-generation secondary battery electrodes for a wide spectrum of applications, including Electric Transportation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electric batteries
- engineering and technology materials engineering composites
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.