Objective
This project aims at establishing a fundamental and applied research program via the set up of a new “virtual modeling lab” which will open the path towards a change of paradigm in the modelling of Space Weather impact. The project indeed aims at putting forward a next-generation of space radiation predictive tool, based on the combination of Space environment tools and high performance, parameter free (first-principles) approaches from the materials science/chemical-physics community, able to calculate with predictive power both the materials’ and the DNA damag In particular, by combining the SPENVIS tool with a highly efficient first-principles materials modelling tool (SIESTA), the new approach will be used to study the degradation of solar cells and the DNA damage for a LEO orbit and an interplanetary travel, under different worst-case Space Weather scenarios. On the basis of the new results, which can disentangle different microscopic effects contrary to the often overall response split out by particles transport tools, we will be able to redefine in detail the “worst case scenarios” in Space Weather, for each sub-parts of a solar cell and different DNA segments, with respect to current definitions. By applying data-mining/smart search algorithms we will be able to propose possible radiation-resistant materials and, on the basis of a new DNA damage descriptor, possible mitigating agents acting on specific parts of the DNA. A first-principles database of key quantities for the interaction of space radiation and materials/biological samples will be set up, to be used both for future, first-principles-only, studies or for current studies improving the input to Monte Carlo tools. The study will pose the basis to enable smart future architectures, based on high performance computing, to better understand the risks posed by Space Weather and to search, with predictive power, possible game-changing solutions to enhance the lifetime of space missions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy space exploration
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules
- natural sciences chemical sciences inorganic chemistry post-transition metals
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.2. - Enabling advances in space technology
See all projects funded under this programme -
H2020-EU.2.1.6.1.1. - Safeguard and further develop a competitive, sustainable and entrepreneurial space industry and research community and strengthen European non-dependence in space systems
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-COMPET-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1180 Bruxelles / Brussel
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.