European Commission logo
English English
CORDIS - EU research results
CORDIS

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

Deliverables

Annual data reporting for 2021

The project data will be collected according to one or more specific templates depending on the technology TRL etc to be made available by the FCH2 JU in a dedicated platformtool accessible online and passwordprotected

Annual data reporting for 2022

The project data will be collected according to one or more specific templates depending on the technology TRL etc to be made available by the FCH2 JU in a dedicated platformtool accessible online and passwordprotected

Annual data reporting for 2023

The project data will be collected according to one or more specific template(s) depending on the technology, TRL, etc.) to be made available by the FCH2 JU in a dedicated platform/tool accessible on-line and password-protected.

Components qualified, verified and containerised

HYG will design, build, and test (full functional) the integrated electrolyser and fuel cell containers and storage in-house before shipping them to Raggovida. KES will support the task by specifying the interconnecting IT hardware for the plant.

Site ready

VK will be responsible for the preparation of the site in Raggovidda. The site will necessarily be located in an area hardly accessible in wintertime, and major construction works will need to be scheduled for summer; VK will build a hall to house the full system, so that work may proceed also in winter. VK will also procure all necessary legal authorisations for the site, and provide suitable heating, internet connection, water supply (extending a previously dug one), and electrical connections to both grid and wind farm. HYG and KES will train VK’s personnel in basic maintenance, safety procedures and general principles of their plant, so that they may promptly intervene in case of minor issues requiring manual intervention on the plant.

Components installed, qualified and verified

VK will lead the operations for installation and connection of the system, with support from HYG and KES. HYG will be responsible for shipping the components to the site, with VK assisting in complying with customs regulations regarding temporary introduction of the equipment. Tecnalia will monitor the installation process and will evaluate changes to their system design, if the need arises. HYG and KES will qualify and verify their components after installation according to their protocols.

Protocols for demonstration of energy-storage strategy

Tecnalia will develop protocols for demonstration to test the control algorithm developed by US and SINTEF for the energy-storage use case. These protocols shall ensure that all relevant aspects of the control algorithms shall be tested during demonstration. Furthermore, Tecnalia will perform a risk analysis for each set of controllers in terms of plant reliability and safety. SINTEF and US will modify their control algorithms according to Tecnalia’s input if necessary. HYG, VK and KES will support the planning phase by quality-checking the protocols before their application in the field.

Engineering study: electrolysers towards MAWP 2023 targets

SINTEF will identify the key challenges to be solved to reach the targets for hydrogen production from renewable electricity set by the FCH JU and its successor in Horizon Europe Drawing on their experience before and during Haeolus SINTEF will evaluate and rank solutions to these challenges with the support of the industrial expertise of HYG SINTEF will include in the study the published state of the art of the electrolyser industry in Europe and worldwide

Six conferences contributions and three journal articles (submitted and not rejected)

UBFC US SINTEF and Tecnalia will publish the results of their research activities in international reputable highimpact peerreviewed openaccess journals These partners will also present their results in international toplevel conferences with particular attention to the more industryoriented and to workshops organised by IPHE

Diagnostics and prognostics experience report

After the initial deployment, the diagnostic and prognostic module will be continually assessed and fine-tuned with the data produced during the demonstration phase.

Energy analysis of the Raggovidda integrated system

Tecnalia will define the overall layout of the plant and, by means of mathematical modelling, the sizing of the components, detailing the high-level system characteristics that will allow the flexible operation of the plant with multiple control strategies during demonstration, also factoring in the wind farm characteristics and the targeted application scenarios.

Field demonstration results with fuel-production strategy

US will be responsible for enacting and following up the demonstration of the plant in fuel-production configuration by means of KES' remote control and monitoring software. US will report any safety-related event to JRC’s HIAD.

Valorisation plan for hydrogen and by-products

SINTEF will chart valorisation opportunities for the hydrogen, oxygen and heat produced by the plant. VK will contribute their local contact network and knowledge of the local economy. SINTEF will contact local authorities and businesses to assess their interest and capability to exploit hydrogen, oxygen and heat and, when appropriate, supporting them in drafting applications for funding of hydrogen demonstration activities with Norwegian or European funding agencies.

Protocols for demonstration of fuel-production strategy

Tecnalia will develop protocols for demonstration to test the control algorithm developed by US and SINTEF for the fuel-production use case. These protocols shall ensure that all relevant aspects of the control algorithms shall be tested during demonstration. Furthermore, Tecnalia will perform a risk analysis for each set of controllers in terms of plant reliability and safety. SINTEF and US will modify their control algorithms according to Tecnalia’s input if necessary. HYG, VK and KES will support the planning phase by quality-checking the protocols before their application in the field.

Three academic seminars for master and PhD students

UBFC and US will organise seminars about the project at target master students classes and PhD schools in different countries

Impact of wind-hydrogen plants on energy systems and RCS

SINTEF, US and Tecnalia will produce and analyse the potential impact of the Haeolus concept on the European and international energy systems, especially in regard to the penetration of wind power into the energy mix. The report will also consider the implications on regulations, codes and standards in energy systems and wind farms, with the support of HYG and of contacts established in the IPHE.

Environmental performance analysis

Tecnalia will evaluate the environmental impact of the hydrogen plant in the actual deployment and in the case studies identified in task 5.2. The evaluation will include field experience from VK and data gathered by KES. Tecnalia will conduct a Life-Cycle Assessment with a gate-to-gate perspective.

Field demonstration results with mini-grid strategy

US will be responsible for enacting and following up the demonstration of the plant in mini-grid configuration by means of KES' remote control and monitoring software. US will report any safety-related event to JRC’s HIAD.

Protocols for demonstration of mini-grid strategy

Tecnalia will develop protocols for demonstration to test the control algorithm developed by US and SINTEF for the mini-grid use case. These protocols shall ensure that all relevant aspects of the control algorithms shall be tested during demonstration. Furthermore, Tecnalia will perform a risk analysis for each set of controllers in terms of plant reliability and safety. SINTEF and US will modify their control algorithms according to Tecnalia’s input if necessary. HYG, VK and KES will support the planning phase by quality-checking the protocols before their application in the field.

Business case analysis for hydrogen in european wind farms

SINTEF will prepare a report for the business case of hydrogen generation within wind farms, detailing and quantifying the opportunities for wind farm operators, the economic advantages and challenges of the technology, and the market outlook depending on the future development of hydrogen technology and wind power penetration, with particular focus on grid balancing services. The analysis will focus on the more relevant markets for wind power in Europe, e.g. Norway, Germany, Spain and Denmark. KES will contribute specifically on the impact of remote control and monitoring on the business model. VK, HYG and Tecnalia will contribute their specific knowledge of their home wind power markets.

Factory acceptance test

HYG will demonstrate the control algorithms programmed by SINTEF and US in their laboratory for a limited time span; this demonstration may lead to modifications to the algorithms by SINTEF and US. KES will be responsible for data management and ensuring the relevance of the laboratory demonstration to field operations.

Control performance report

SINTEF will evaluate the performance of control systems for each use case as the data is produced from the demonstration. SINTEF and US will test the control system by appropriate methods, such as for example simulations or X-in-the-loop methods. With these methods, the controlled plant will be tested even in operating conditions not present at the demonstration site, e.g. hydrogen demand, distribution of hydrogen with pipeline, usage of plant waste heat, etc. SINTEF will assess the performance of the control systems, in particular their applicability to other sites (offshore, warmer climates, etc.) and, with the support of US, will suggest improvements to the control algorithms and guidelines for future work; if possible, these will be tested within Haeolus.

Techno-economic analysis of wind-hydrogen integration

Tecnalia will evaluate the applicability of the design in other conditions, and suggest modifications for similar plants in different kinds of wind farms (e.g. offshore, single-turbine, large farms, etc.), considering at least three case studies from actual wind farms. SINTEF will support the task in the socio-economic evaluation of such plants, their profitability and their potential for job creation and effect on local and national economies. SINTEF shall also report on the applicable regulations, codes and standards for such applications for all case studies identified by Tecnalia.

Field demonstration results with energy-storage strategy

US will be responsible for enacting and following up the demonstration of the plant in energy-storage configuration by means of KES' remote control and monitoring software. US will report any safety-related event to JRC’s HIAD.

Visit to plant for external observers

UBFC will arrange a visit to the plant during demonstration for interested parties including politicians industry nongovernmental organisations with the logistic support of VK

Project presented at international industrial fair

UBFC, with the support of HYG, will organise a presence at a relevant fair (e.g. the Hanover Fair) towards the end of the project, to showcase its results to an industrial and decision-making audience.

Real-time demonstration data available on the Web site

Through the Web site KES will visualise the operation of the plant based on realtime data during the demonstration phase

Web site online, presence in selected social networks

KES will set up a Web site for the project. The Web site will feature project description and progress, contact information, public deliverables, open-access journal articles, presentations and relevant news items for the field of wind-hydrogen systems. KES will also establish a presence on relevant social media, such as LinkedIn, Twitter, YouTube, and add content regularly through the project.

Dissemination workshop

UBFC will organise a workshop during the early stages of the project, directed at both research and industry, to disseminate the early results in system design and establish connections with other initiatives. The workshop will preferably be organised in connection with a relevant international scientific conference.

Control system for mini-grid use case

US will develop high-level control algorithms for the integrated wind-hydrogen system for the use case of mini-grid.

Control system for energy-storage use case

US will develop high-level control algorithms for the integrated wind-hydrogen system for the use case of energy storage.

Control system for fuel-production use case

US will develop high-level control algorithms for the integrated wind-hydrogen system for the use case of fuel production.

Student internship on-site

UBFC and US will organise one internship onsite for a doctoral or master student

Diagnostics and prognostics for the wind-hydrogen plant

UBFC will develop relevant diagnostic and prognostic systems to assess the current state and maintenance requirements of all critical components (electrolyser, compressor, …), to feed the controller and to anticipate maintenance requirements of all critical components so that the system may be operated for months without supervision in person.

Dynamic model for hydrogen production and storage plants

US will develop a library of static and dynamic process models of the system components. The model will include actual constraints, such as working ranges of components, capacity limits of power the lines, dynamic output of wind turbines, dynamics and ramping rates. SINTEF will integrate the resulting model library into a fully integrated system, and support US to ensure that the model library is the best trade-off between accuracy, computational performance and complexity for the purpose of control synthesis and analysis.

Publications

Optimal Tracking of Grid Operated Load Demand with Hydrogen based Storage System Using Model Based Predictive Control

Author(s): Muhammad Bakr Abdelghany, Muhammad Shehzad, Valerio Mariani, Luigi Glielmo
Published in: World Hydrogen Energy Conference, 2022
Publisher: WHEC2020

Kickstarting an Arctic Hydrogen Valley: The Haeolus project

Author(s): Federico Zenith
Published in: Next Generation Electrolysers Conference, 2020
Publisher: Next Generation Electrolysers Conference
DOI: 10.5281/zenodo.4316974

The Haeolus project in Berlevåg

Author(s): Zenith, Federico
Published in: Hydrogen Production in the Arctic seminar, Issue 26/10/2022, 2022
Publisher: SINTEF
DOI: 10.5281/zenodo.7318643

The Haeolus project in Berlevåg

Author(s): Zenith, Federico
Published in: 2022
Publisher: SINTEF
DOI: 10.5281/zenodo.7318642

Dette fikk vi til: Hydrogen-prosjektet Haeolus i Berlevåg

Author(s): Zenith, Federico
Published in: 2021
Publisher: SINTEF
DOI: 10.5281/zenodo.4542919

Haeolus: Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

Author(s): Zenith, Federico
Published in: 2019
Publisher: Fuel Cells & Hydrogen Joint Undertaking
DOI: 10.5281/zenodo.3553686

Hydrogen in Northern Norway: A hydrogen valley at Europe's periphery

Author(s): Zenith, Federico
Published in: 2019
Publisher: SINTEF
DOI: 10.5281/zenodo.3339180

Framtidig bruk av hydrogen

Author(s): Federico Zenith
Published in: Hydrogensone Arktis, 2020
Publisher: Troms & Finnmark County Council
DOI: 10.5281/zenodo.3675350

Green Hydrogen from Intermittent Renewables

Author(s): Zenith, Federico
Published in: Issue 25/10/2022, 2022
Publisher: SINTEF
DOI: 10.5281/zenodo.7318621

Modeling and Optimal Control of a Hydrogen Storage System for Wind Farm Output Power Smoothing

Author(s): Muhammad Bakr Abdelghany, M. F Shehzad, Davide Liuzza, Valerio Mariani, Luigi Glielmo
Published in: 59th IEEE Conference on Decision and Control, 2020
Publisher: 59th IEEE Conference on Decision and Control
DOI: 10.5281/zenodo.4420338

Hydrogen-energy systems, production and grid services

Author(s): Zenith, Federico
Published in: 2021
Publisher: Haeolus project
DOI: 10.5281/zenodo.5052781

Large-scale hydrogen production from wind power in Arctic conditions

Author(s): Federico Zenith
Published in: Nordic Hydrogen & Fuel Cell Conference, 2018
Publisher: Nordic Hydrogen & Fuel Cell Conference
DOI: 10.5281/zenodo.1460454

Large-scale hydrogen production from wind power in Arctic conditions

Author(s): Federico Zenith
Published in: IEA HIA Task 38 5th Plenary Meeting, 2018
Publisher: IEA HIA Task 38

Hydrogen Export to Svalbard: Exploiting Stranded Wind in Finnmark

Author(s): Federico Zenith
Published in: Input meeting for Svalbard's future energy supply, 2018
Publisher: Norway's Ministry for Oil and Energy
DOI: 10.5281/zenodo.1482894

Non-Technical Obstacles for Power-to-H2: Hydrogen from Wind Power in Arctic Conditions

Author(s): Federico Zenith
Published in: Workshop on Power-to-X Demonstrations, 2018
Publisher: IEA HIA Task 38
DOI: 10.5281/zenodo.1493992

HAEOLUS: Proposing a new-generation electrolyser integrated within astate-of-the-art wind farm in a remote area with access to a weak power grid

Author(s): Roche, Robin
Published in: Journées du GdR SEEDS-JCGE, 2019
Publisher: CNRS
DOI: 10.5281/zenodo.3241265

Konkrete muligheter for anvendelser av hydrogen i Varangerregionen

Author(s): Federico Zenith
Published in: Hydrogen i Vinden, 2019
Publisher: SINTEF
DOI: 10.5281/zenodo.2605260

Potential impact and economic potential for integrated wind farm - electrolyser energy system

Author(s): Vibeke S. Nørstebø, Miguel Muñoz Ortiz, Gerardo A. Perez-Valdes
Published in: 30th European Conference on Operational Research (EURO2019), 2019
Publisher: UCD
DOI: 10.5281/zenodo.3669909

Visjoner for hydrogen og vind i Finnmark

Author(s): Christian Bue
Published in: Hydrogen i Vinden, 2019
Publisher: Varanger Kraft
DOI: 10.5281/zenodo.2607649

Hydrogen som energibærer - Norges nøkkelrolle i et internasjonalt perspektiv

Author(s): Steffen Møller-Holst
Published in: Hydrogen i Vinden, 2019
Publisher: SINTEF
DOI: 10.5281/zenodo.2605540

Hydrogen i Finnmark - Haeolus-prosjektet & C.

Author(s): Federico Zenith
Published in: 2019
Publisher: SINTEF
DOI: 10.5281/zenodo.3465528

Hydrogen energy storage and grid services in microgrids

Author(s): Federico Zenith
Published in: Microgrids Summer School, 2019
Publisher: FCLAB
DOI: 10.5281/zenodo.3267293

Modeling of a Hydrogen Storage Wind Plant for Model Predictive Control Management Strategies

Author(s): Muhammad Faisal Shehzad, Muhammad Bakr Abdelghany, Davide Liuzza, Luigi Glielmo
Published in: 2019 18th European Control Conference (ECC), 2019, Page(s) 1896-1901, ISBN 978-3-907144-00-8
Publisher: IEEE
DOI: 10.23919/ecc.2019.8795937

Predictive maintenance for wind-hydrogen plant using diagnostics and prognostics of PEM electrolysers

Author(s): Robin Roche
Published in: European Control Conference 2019, 2019
Publisher: IEEE

La oportunidad de la hibridación entre los sistemas eólicos y los de hidrógeno Almacenamiento y servicios a la red

Author(s): Maider Santos-Mugica
Published in: International Summit on the Operational Analysis of Wind Farms, 2020
Publisher: International Summit on the Operational Analysis of Wind Farms
DOI: 10.5281/zenodo.4288932

Impact and economic potential for integrated wind farm-electrolyser energy system

Author(s): Nørstebø, Vibeke Stærkebye; Muñoz Ortiz, Miguel; Perez-Valdes, Gerardo A.
Published in: 30th European Conference on Operational Research, Issue 23-26/06/2019, 2019
Publisher: SINTEF
DOI: 10.5281/zenodo.3669908

A Feature-Based Prognostics Strategy for PEM Fuel Cell Operated under Dynamic Conditions

Author(s): Meiling Yue, Zhongliang Li, Robin Roche, Samir Jemei, Noureddine Zerhouni
Published in: 2020 Prognostics and Health Management Conference (PHM-Besançon), 2020, Page(s) 122-127, ISBN 978-1-7281-5675-0
Publisher: IEEE
DOI: 10.1109/phm-besancon49106.2020.00026

Grid Balancing with Electrolysers and Wind Power

Author(s): Federico Zenith; Martin Nord Flote; Maider Santos-Mugica; Corey Scott Duncan; Valerio Mariani; Claudio Marcantonini
Published in: 2023
Publisher: ZSW-BW
DOI: 10.5281/zenodo.8389349

Producing and Exporting Hydrogen from Stranded Resources

Author(s): Zenith, Federico
Published in: 2022
Publisher: Alaska Center for Energy and Power
DOI: 10.5281/zenodo.6468199

A Unified Control Platform and Architecture for the Integration of Wind-Hydrogen Systems Into the Grid

Author(s): Muhammad Bakr Abdelghany; Valerio Mariani; Davide Liuzza; Oreste Riccardo Natale; Luigi Glielmo
Published in: IEEE Transactions on Automation Science and Engineering, 2024, ISSN 1545-5955
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tase.2023.3292029

Hydrogen energy systems: A critical review of technologies, applications, trends and challenges

Author(s): Yue, Meiling; Lambert, Hugo; Pahon, Elodie; Roche, Robin; Jemeï, Samir; Hissel, Daniel
Published in: Renewable and Sustainable Energy Reviews, 2021, ISSN 1364-0321
Publisher: Elsevier BV
DOI: 10.1016/j.rser.2021.111180

Two-stage model predictive control for a hydrogen-based storage system paired to a wind farm towards green hydrogen production for fuel cell electric vehicles

Author(s): Muhammad Bakr Abdelghany, Muhammad Faisal Shehzad, Valerio Mariani, Davide Liuzza, Luigi Glielmo
Published in: International Journal of Hydrogen Energy, Issue 47, 2022, Page(s) 32202-32222, ISSN 0360-3199
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.ijhydene.2022.07.136

Degradation identification and prognostics of proton exchange membrane fuel cell under dynamic load

Author(s): Yue, Meiling; Li, Zhongliang; Roche, Robin; Jemeï, Samir; Zerhouni, Noureddine
Published in: Control Engineering Practice, Issue 118, 2022, Page(s) 104959, ISSN 0967-0661
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.conengprac.2021.104959

Mixed Logic Dynamic Models for MPC Control of Wind Farm Hydrogen-Based Storage Systems

Author(s): Muhammad Faisal Shehzad, Muhammad Bakr Abdelghany, Davide Liuzza, Valerio Mariani, Luigi Glielmo
Published in: Inventions, Issue 4/4, 2019, Page(s) 57, ISSN 2411-5134
Publisher: MDPI
DOI: 10.3390/inventions4040057

Optimal operations for hydrogen-based energy storage systems in wind farms via model predictive control

Author(s): Muhammad Bakr Abdelghany; Muhammad Faisal Shehzad; Davide Liuzza; Valerio Mariani; Luigi Glielmo
Published in: International Journal of Hydrogen Energy, Issue 57, 2021, Page(s) 29297-29313, ISSN 0360-3199
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.ijhydene.2021.01.064

Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control

Author(s): Federico Zenith; Luigi Glielmo; Valerio Mariani
Published in: energies, Issue 15, 2022, Page(s) 6307, ISSN 1996-1073
Publisher: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/en15176307

Hierarchical model predictive control for islanded and grid-connected microgrids with wind generation and hydrogen energy storage systems

Author(s): Muhammad Bakr Abdelghany; Valerio Mariani; Davide Liuzza; Luigi Glielmo
Published in: International Journal of Hydrogen Energy, 2024, ISSN 0360-3199
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.ijhydene.2023.08.056

Value of green hydrogen when curtailed to provide grid balancing services

Author(s): Federico Zenith; Martin Nord Flote; Maider Santos-Mugica; Corey Scott Duncan; Valerio Mariani; Claudio Marcantonini
Published in: International Journal of Hydrogen Energy, Issue 47, 2022, Page(s) 35541-35552, ISSN 0360-3199
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.ijhydene.2022.08.152

Electrolysers towards EU MAWP 2023 targets and beyond

Author(s): Andrenacci, Sara; Choi, Yejung; Raka, Yash; Talic, Belma; Colmenares-Rausseo, Luis
Published in: 2022
Publisher: SINTEF
DOI: 10.5281/zenodo.7144913

Searching for OpenAIRE data...

There was an error trying to search data from OpenAIRE

No results available