Objective
Imagine a Big Data application with the following characteristics: (i) it has to process large amounts of complex streaming data,
(ii) the application logic that processes the incoming data must execute and complete within a strict time limit,
and (iii) there is a limited budget for infrastructure resources.
In today’s world, the data would be streamed from the local network or edge devices to a cloud provider which is rented by a customer to perform the data execution. The Big Data software stack, in an application and hardware agnostic manner, will split the execution stream into multiple tasks and send them for processing on the nodes the customer has paid for. If the outcome does not match the strict three second business requirement, then the customer has two options:
1) scale-up (by upgrading processors at node level),
2) scale-out (by adding nodes to their clusters), or 3) manually implement code optimizations specific to the underlying hardware.
E2Data proposes an end-to-end solution for Big Data deployments that will fully exploit and advance the state-of-the-art in infrastructure services by delivering a performance increase of up to 10x while utilizing up to 50% less cloud resources.
E2Data will provide a new Big Data paradigm, by combining state-of-the-art software components, in order to achieve maximum resource utilization for heterogeneous cloud deployments without affecting current programming norms (i.e. no code changes in the original source).
The E2Data innovations will be driven by the requirements of four resource demanding applications from the finance, health, green buildings, and security domains.
Finally, the evaluation will be conducted on both high-performing x86 and low-power ARM cluster architectures representing realistic execution scenarios of real-world deployments.
Fields of science
Programme(s)
Topic(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
E14 3BS London
United Kingdom
See on map
Participants (8)
M13 9PL Manchester
See on map
106 82 Athina
See on map
67663 Kaiserslautern
See on map
2453 Luxembourg
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
CB3 0AX Cambridge
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
26504 Patras
See on map
DE11 8HS Swadlincote Derbyshire
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
SE1 7ND London
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.