Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Big Data to Enable Global Disruption of the Grapevine-powered Industries

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Piloting Plan (se abrirá en una nueva ventana)

A report documenting the plan for the development of the pilots and the methodology and materials for the pilot trials.

Scalability and Robustness Experimental Methodology (se abrirá en una nueva ventana)

A document describing the methodology, the performance criteria, the protocols for the experiments, and the technical infrastructure requirements.

BigDataGrapes Software Stack Design (se abrirá en una nueva ventana)

A report of the overall design of the BigDataGrapes software stack, including functional specifications, communication standards, external tools and underlying frameworks.

Use Cases & Technical Requirements Specification (se abrirá en una nueva ventana)

A report presenting in detail the BigDataGrapes use cases and their interpretation with respect to technical and infrastructural requirements.

Data Management Plan & Support Pack (se abrirá en una nueva ventana)

This deliverable will be a report that will specify how data will be collected, processed, monitored, catalogued, and disseminated during the project lifetime. It will also include a Support Pack with guidelines for the project coordinator and the partners, explaining how they should practically apply the guidelines during their activities, which software tools and services they should use, and how they can align the project requirements with their institutions’ standard practices and systems.

Experimental Report on Projected Datasets (se abrirá en una nueva ventana)

A document with the experimental results after testing the BigDataGrapes components over the two foreseen dataset projections (2020 and 2030).

Evaluation Report and KPI Assessment (se abrirá en una nueva ventana)

A report on the results of the application piloting sessions, inline with the defined experimental protocols and in accordance with the evaluation methodology produced in the context of T8.2.

Annual Public Report (se abrirá en una nueva ventana)

A report summarising the achievements and outcomes of the project for the reporting period, targeted to the general public. It will be made available via the project’s website.

Experimental Report on Current Datasets (se abrirá en una nueva ventana)

A document with the experimental results after the execution of the methodology over the data sets that were contributed to the project by the data partners.

Experimental Protocols and Evaluation Methodology (se abrirá en una nueva ventana)

A report describing the experiments to be conducted and their parameters, along with the methodology for assessing the results of the experiments in accordance with the piloting plan.

Dissemination and Awareness Report (se abrirá en una nueva ventana)

A report documenting the various dissemination, awareness and outreach activities and results for the respective period.

Integrated Software Stack and APIs (se abrirá en una nueva ventana)

A deployment of the Integrated BigDataGrapes Software Stack in the cloud, providing access and documentation for the APIs of the different components comprising the stack.

Data Ingestion and Integration Components (se abrirá en una nueva ventana)

The software components for carrying out data ingestion in the BigDataGrapes ecosystem, along with their documentation.

Methods and Tools for Distributed Inference (se abrirá en una nueva ventana)

Software assets the implement the distributed inference mechanisms envisioned in the project. They will be accompanied by a report providing details on the adopted methodology and by the documentation of the software.

Resource Optimization Methods and Algorithms (se abrirá en una nueva ventana)

Software assets the implement the novel resource optimization techniques envisioned in the project. They will be accompanied by a report providing details on the adopted methodology and by the documentation of the software.

Data Modelling and Linking Components (se abrirá en una nueva ventana)

A tool for creating, maintaining and linking semantic data, customized to serve the needs of the relevant grapevine-powered industries.

Uncertainty-aware Visual Analytics Components (se abrirá en una nueva ventana)

Software assets the implement the novel uncertainty-aware visual analytics mechanisms envisioned in the project. They will be accompanied by a report providing details on the adopted methodologies and by the documentation of the software.

Linguistic Pipelines for Semantic Enrichment (se abrirá en una nueva ventana)

A set of cooperating components carrying out different NLP tasks in an organized fashion in order to extract knowledge from unstructured text and use the results to semantically annotate relevant BigDataGrapes data.

Distributed Indexing Components (se abrirá en una nueva ventana)

Software assets the implement the novel Big Data indexing mechanisms envisioned in the project. They will be accompanied by a report providing details on the adopted methodology and by the documentation of the software.

Methods and Tools for Predictive Analytics over Extremely Large Datasets (se abrirá en una nueva ventana)

Software assets the implement the novel predictive analytics methods envisioned in the project. They will be accompanied by a report providing details on the adopted methodology and by the documentation of the software.

Analytics & Processing Layer (se abrirá en una nueva ventana)

Software assets the implement the novel distributed processing mechanisms envisioned in the project. They will be accompanied by a report providing details on the adopted methodology and by the documentation of the software.

Interactive Visualization Components (se abrirá en una nueva ventana)

A library of interactive visualisation components adjusted to the handling of Big Data and incorporating interaction and parameterisation techniques. The software will be accompanied by a detailed documentation and a summary of the novel methods implemented within the components.

Trust-aware Decision Support Systems (se abrirá en una nueva ventana)

Decision support component that incorporates the novel trust-aware recommendation components envisioned in the project. They will be accompanied by a report providing details on the adopted methodologies and by the documentation of the software.

Integration and Operation with real-life Software Systems (se abrirá en una nueva ventana)

A Farm Management System prototype incorporating the appropriate functionalities of the BigDataGrapes software stack, which will be used in the relevant piloting sessions.

Integration and Operation with real-life Practices (se abrirá en una nueva ventana)

A dashboard targeting industry-level decision makers and practitioners that incorporates the appropriate functionalities of the BigDataGrapes software stack, which will be used in the relevant piloting sessions.

Website and Social Media Presence (se abrirá en una nueva ventana)

Setup and maintenance plan for the project’s web site, social media accounts, blogs, forums, etc.

Publicaciones

BigDataGrapes D3.1 - Data Modelling and Linking Components (se abrirá en una nueva ventana)

Autores: Alexiev, Vladimir
Publicado en: Edición 1, 2018
Editor: European Commission
DOI: 10.5281/zenodo.1482757

BigDataGrapes D3.2 - Data Ingestion & Integration Components (se abrirá en una nueva ventana)

Autores: Zervas, Panagiotis; Konstantinidis, Sotiris; Koukourikos, Antonis
Publicado en: Edición 1, 2018
Editor: European Commission
DOI: 10.5281/zenodo.1482751

Topic Propagation in Conversational Search (se abrirá en una nueva ventana)

Autores: Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Ophir Frieder
Publicado en: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, Página(s) 2057-2060, ISBN 9781450380164
Editor: ACM
DOI: 10.1145/3397271.3401268

An Empirical Comparison of Classification Algorithms for Imbalanced Credit Scoring Datasets (se abrirá en una nueva ventana)

Autores: Leopoldo Soares de Melo Junior, Franco Maria Nardini, Chiara Renso, Jose Antonio Fernandes de Macedo
Publicado en: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 2019, Página(s) 747-754, ISBN 978-1-7281-4550-1
Editor: IEEE
DOI: 10.1109/icmla.2019.00133

KNORA-IU: Improving the Dynamic Selection Prediction in Imbalanced Credit Scoring Problems (se abrirá en una nueva ventana)

Autores: Leopoldo Melo, Franco Maria Nardini, Chiara Renso, Jose Antonio Macedo
Publicado en: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Página(s) 424-431, ISBN 978-1-7281-3798-8
Editor: IEEE
DOI: 10.1109/ictai.2019.00066

Training Curricula for Open Domain Answer Re-Ranking (se abrirá en una nueva ventana)

Autores: Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder
Publicado en: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, Página(s) 529-538, ISBN 9781450380164
Editor: ACM
DOI: 10.1145/3397271.3401094

Fast Approximate Filtering of Search Results Sorted by Attribute (se abrirá en una nueva ventana)

Autores: Franco Maria Nardini, Roberto Trani, Rossano Venturini
Publicado en: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, Página(s) 815-824, ISBN 9781450361729
Editor: ACM
DOI: 10.1145/3331184.3331227

Efficient Document Re-Ranking for Transformers by Precomputing Term Representations (se abrirá en una nueva ventana)

Autores: Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder
Publicado en: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, Página(s) 49-58, ISBN 9781450380164
Editor: ACM
DOI: 10.1145/3397271.3401093

Efficient and Effective Query Auto-Completion (se abrirá en una nueva ventana)

Autores: Simon Gog, Giulio Ermanno Pibiri, Rossano Venturini
Publicado en: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, Página(s) 2271-2280, ISBN 9781450380164
Editor: ACM
DOI: 10.1145/3397271.3401432

Query-level Early Exit for Additive Learning-to-Rank Ensembles (se abrirá en una nueva ventana)

Autores: Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Salvatore Trani
Publicado en: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, Página(s) 2033-2036, ISBN 9781450380164
Editor: ACM
DOI: 10.1145/3397271.3401256

Efficient and Effective Query Expansion for Web Search (se abrirá en una nueva ventana)

Autores: Lucchese, Claudio; Nardini, Franco Maria; Perego, Raffaele; Trani, Roberto; Venturini, Rossano
Publicado en: Edición 24, 2018, ISBN 978-1-4503-6014-2
Editor: Association for Computing Machinery (ACM)
DOI: 10.5281/zenodo.2668248

Efficient Energy Management in Distributed Web Search (se abrirá en una nueva ventana)

Autores: Catena, Matteo; Frieder, Ophir; Tonellotto, Nicola
Publicado en: Edición 25, 2018, ISBN 978-1-4503-6014-2
Editor: Association for Computing Machinery (ACM)
DOI: 10.5281/zenodo.2710863

Selective Gradient Boosting for Effective Learning to Rank (se abrirá en una nueva ventana)

Autores: Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando, Salvatore Trani
Publicado en: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval - SIGIR '18, 2018, Página(s) 155-164, ISBN 9781-450356572
Editor: Association for Computing Machinery (ACM )
DOI: 10.1145/3209978.3210048

Performance Analysis of WebRTC-based Video Streaming over Power Constrained Platforms (se abrirá en una nueva ventana)

Autores: Bacco, Manlio; Catena, Matteo; de Cola, Tomaso; Gotta, Alberto; Tonellotto, Nicola
Publicado en: Edición 2, 2018, ISBN 978-1-5386-4727-1
Editor: IEEE
DOI: 10.5281/zenodo.2705727

PHARA: an augmented reality grocery store assistant (se abrirá en una nueva ventana)

Autores: Verbert, Katrien; Gutiérrez, Francisco; Htun, Nyi-Nyi
Publicado en: Edición 7, 2018, Página(s) 339-345, ISBN 978-1-4503-5941-2
Editor: ACM Transactions on Information Systems
DOI: 10.5281/zenodo.3267211

Multiple Query Processing via Logic Function Factoring (se abrirá en una nueva ventana)

Autores: Matteo Catena, Nicola Tonellotto
Publicado en: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, Página(s) 937-940, ISBN 9781450361729
Editor: ACM
DOI: 10.1145/3331184.3331297

Expansion via Prediction of Importance with Contextualization (se abrirá en una nueva ventana)

Autores: Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder
Publicado en: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, Página(s) 1573-1576, ISBN 9781450380164
Editor: ACM
DOI: 10.1145/3397271.3401262

Practical trade‐offs for the prefix‐sum problem (se abrirá en una nueva ventana)

Autores: Giulio Ermanno Pibiri, Rossano Venturini
Publicado en: Software: Practice and Experience, 2020, ISSN 0038-0644
Editor: John Wiley & Sons Inc.
DOI: 10.1002/spe.2918

On Optimally Partitioning Variable-Byte Codes (se abrirá en una nueva ventana)

Autores: Giulio Ermanno Pibiri, Rossano Venturini
Publicado en: IEEE Transactions on Knowledge and Data Engineering, 2019, Página(s) 1-1, ISSN 1041-4347
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tkde.2019.2911288

Compressed Indexes for Fast Search of Semantic Data (se abrirá en una nueva ventana)

Autores: Giulio Ermanno Pibiri, Raffaele Perego, Rossano Venturini
Publicado en: IEEE Transactions on Knowledge and Data Engineering, 2020, Página(s) 1-1, ISSN 1041-4347
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tkde.2020.2966609

Techniques for Inverted Index Compression (se abrirá en una nueva ventana)

Autores: Giulio Ermanno Pibiri, Rossano Venturini
Publicado en: ACM Computing Surveys, Edición 53/6, 2021, Página(s) 1-36, ISSN 0360-0300
Editor: Association for Computing Machinary, Inc.
DOI: 10.1145/3415148

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees (se abrirá en una nueva ventana)

Autores: Lucchese, Claudio; Nardini, Franco Maria; Orlando, Salvatore; Perego, Raffaele; Silvestri, Fabrizio; Trani, Salvatore
Publicado en: ACM Transactions on Intelligent Systems and Technology (TIST), Edición 8, 2018, ISSN 2157-6904
Editor: Association for Computing Machinery (ACM)
DOI: 10.5281/zenodo.2668361

Parallel Traversal of Large Ensembles of Decision Trees (se abrirá en una nueva ventana)

Autores: Francesco Lettich, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
Publicado en: IEEE Transactions on Parallel and Distributed Systems, 2018, Página(s) 1-1, ISSN 1045-9219
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tpds.2018.2860982

Towards a visual guide for communicating uncertainty in Visual Analytics☆ (se abrirá en una nueva ventana)

Autores: Gutiérrez, Francisco; Verbert, Katrien; Seipp, Karsten; Ochoa, Xavier
Publicado en: Journal of Computer Languages, Edición 19, 2018, ISSN 2590-1184
Editor: ELSEVIER
DOI: 10.5281/zenodo.3258001

Handling Massive N-Gram Datasets Efficiently (se abrirá en una nueva ventana)

Autores: Ermanno Pibiri, Giulio; Venturini, Rossano
Publicado en: ACM Transactions on Information Systems, Edición 25, 2019, ISSN 1046-8188
Editor: Association for Computing Machinary, Inc.
DOI: 10.5281/zenodo.3257995

A Review of Visualisations in Agricultural Decision Support Systems: an HCI Perspective (se abrirá en una nueva ventana)

Autores: Gutiérrez, Francisco; Htun, Nyi-Nyi; Schlenz, Florian; Kasimati, Aikaterini; Verbert, Katrien
Publicado en: Computers and Electronics in Agriculture, Edición 15, 2019, ISSN 0168-1699
Editor: Elsevier BV
DOI: 10.5281/zenodo.3267196

Efficient Query Processing for Scalable Web Search (se abrirá en una nueva ventana)

Autores: Tonellotto, Nicola; Macdonald, Craig; Ounis, Iadh
Publicado en: Foundations and Trends® in Information Retrieval, Edición 37, 2018, Página(s) 319-500, ISSN 1554-0677
Editor: NOW
DOI: 10.5281/zenodo.3268359

An Optimal Algorithm to Find Champions of Tournament Graphs (se abrirá en una nueva ventana)

Autores: Lorenzo Beretta, Franco Maria Nardini, Roberto Trani, Rossano Venturini
Publicado en: String Processing and Information Retrieval - 26th International Symposium, SPIRE 2019, Segovia, Spain, October 7–9, 2019, Proceedings, Edición 11811, 2019, Página(s) 267-273, ISBN 978-3-030-32685-2
Editor: Springer International Publishing
DOI: 10.1007/978-3-030-32686-9_19

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0