Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Maintaining Quantum Coherence for Quantum Information Applications

Objective

Quantum information technologies have attracted much attention in recent years. Advanced fabrication technologies have made it possible to develop quantum architectures, such as trapped ions, color-defects in crystals (nitrogen-vacancy in diamond), and Rydberg atoms, where quantum information applications can be implemented. At the heart of this growing field stands quantum coherence. Maintaining coherence for longer times enables the realization of richer and more interesting quantum applications, varying from quantum gates for quantum computation, through quantum simulation of classical intractable systems, to quantum sensing schemes for medical applications. Noise, leakage and decay channels constitute the main sources for decoherence, which limit the fidelity of the desired quantum operations. In this project my main goal is to theoretically investigate ways to maintain coherence in the quantum systems mentioned above, while realizing a variety of quantum applications. This will be done using either dynamical decoupling or quantum error correction techniques. A numerical verification of the theoretical proposals will be undertaken using Runge-Kutta simulations of the systems together with the Orenstein-Uhlenbeck noise process. Importantly, I intend to collaborate on the realization of the theoretical proposals with the relevant experimental groups. In this way, I will enrich my scientific knowledge regarding the specific decoherence sources in the different experimental setups, and thus, my theoretical investigation can be adjusted specifically to the experimental needs. Eventually, these experiment-theory collaborations will end up in experimental verification and application of the theoretical proposals, which will have high impact on research within and far beyond physics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

AARHUS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 194,80
Address
NORDRE RINGGADE 1
8000 Aarhus C
Denmark

See on map

Region
Danmark Midtjylland Østjylland
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 194,80
My booklet 0 0