CORDIS - EU research results

Selective Hydrogenation of Arenes - A Dream Reaction


The hydrogenation of ketones and olefins is one of the oldest synthetically used transformations. The reaction is highly sustainable and its value has been acknowledged by two Nobel Prizes. In contrast, the hydrogenation of arenes is still underexplored due to the high kinetic barrier caused by aromaticity. However, the selective arene hydrogenation constitutes a dream reaction for use in an ideal synthesis: The transformation is straightforward, uses readily available substrates, and is able to build-up an astonishing amount of complexity, with the potential to form multiple defined sterocentres, in a single step. With our first paper on selective arene hydrogenation published in 2004, we became pioneers in this field and have continuously made important contributions using metal–carbene complexes. As a world-leader in this area and with expertise in several relevant fields of catalysis, we are perfectly suited to convert arene hydrogenation into a reliable and general transformation within the frame of this project. We will provide rapid access to sought-after motifs and consequently will enable breakthroughs in material and life sciences.

Key to our success will be the design of strongly electron-donating carbene ligands and deep mechanistic understanding. Specifically, we will develop solutions for the problematic hydrogenation of heteroatom-substituted arenes, and heteroarenes. Utilising the soluble nature of a homogenous catalyst, we also envision applications in the hydrogenation of polymers, offering direct access to new materials. Furthermore, the use of syngas is expected to allow for the development of a merged hydrogenation-hydroformylation reaction to yield highly functionalised cyclohexanes in a single step from minimally functionalised arenes. Finally, we aim to develop chiral versions of our highly reactive metal–carbene catalyst to enable the previously unknown but highly desirable enantioselective hydrogenation of benzene derivatives.

Host institution

Net EU contribution
€ 2 495 000,00

See on map

Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Total cost
€ 2 495 000,00

Beneficiaries (1)