Objective
Glycans, or oligosaccharides, are ubiquitous in biological systems. Because they decorate the surface of cells, they play a key role in virtually all cellular recognition processes and are implicated in almost every major disease. Despite their importance, the characterization of glycan primary structure lags far behind that of proteins and DNA because of their intrinsic isomeric complexity. The isomeric nature of the monosaccharide building blocks, the stereochemistry of the glycosidic bond, the possibility of multiple attachment points, and the occurrence of isomeric branched structures all make glycans difficult to analyze.
Although mass spectrometry (MS) is one of the most sensitive approaches for glycan analysis, it has difficulty to distinguish all these various types of isomerisms. Ion mobility spectrometry (IMS) combined with MS has demonstrated some ability to identify glycan anomers and regioisomers, but cannot easily distinguish isomeric disaccharides, for example.
We have recently demonstrated that cryogenic infrared spectroscopy provides unique vibrational fingerprints of glycans that distinguishes all the various types of isomerism. When combined with simultaneous measurements of mass and ion mobility, these fingerprints can be tabulated in a database and used to identify a given glycan from a mixture. However, adding a spectroscopic dimension to ion mobility and mass measurements requires additional time, which hampers it use as an analytical tool. To use spectroscopic data for real-world glycan analysis, one must multiplex the measurement process and record the vibrational spectrum of many species simultaneously.
This project involves designing and constructing an instrument that combines state-of-the-art ion mobility separation, cryogenic ion spectroscopy, and time-of-flight mass spectrometry to perform high throughput analysis of glycan primary structure. The success of this project would represent a tremendous breakthrough for glycoscience.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences biological sciences biochemistry biomolecules carbohydrates
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.