Objetivo
Betalin’s mission is to provide a tissue-derived acellular micro-scaffold that will extend the life and the insulin-producing
performance of transplanted beta cells in order to reduce or eliminate the dependence of some diabetics on insulin therapy.
Type 1 Diabetes is a chronic disease that results from the autoimmune destruction of the insulin-producing beta cells in the
pancreas. Its cause is still uncertain and there is no known way to prevent its onset. With~70,000 new cases diagnosed
each year, it is estimated that ~17 mn people worldwide are afflicted with T1DM. In the US alone, T1DM results in $14.4 bn
in medical costs and lost income annually. Type 1 diabetics face a lifetime regime of insulin therapy and very careful lifestyle
management in an attempt to mitigate the long-term complications associated with T1DM such as cardiovascular disease,
damage to the eyes, kidneys and nerves, and premature death. In recent years islet transplantation has been researched as
a treatment for T1DM. The procedure involves injecting millions of islets (the pancreatic cell clusters that “house” the
insulinproducing
beta cells) harvested from cadavers, followed by immunosuppression therapy. Islet transplantation is a promising
approach but the naked islets are very unstable: they must be transplanted almost immediately after harvesting and up to
80% of the transplanted islets stop functioning within 24hrs. The result is that, after five years, less than 10% of the
recipients are free of daily insulin treatment. Betalin’s technology is based on the premise that in order for beta cells to
function properly it is necessary to provide an appropriate stromal (connective tissue) micro-environment. The proprietary
platform technology is a method to prepare acellular organ-derived micro-scaffolds that preserve the architecture and the
basic composition of organ stroma and ensure that no seeded cell will be more than 150 microns from a source of nutrients
and gases.
Ámbito científico
- medical and health sciencesclinical medicineendocrinologydiabetesdiabetic nephropathy
- medical and health sciencesbasic medicineimmunology
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- medical and health sciencesclinical medicineophthalmologyretinopathy
- medical and health sciencesclinical medicineangiologyvascular diseasescerebrovascular diseases
Programa(s)
- H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies Main Programme
- H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
- H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEINST-1-2016-2017
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
5268101 Ramat Gam
Israel
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.