European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

A key breakthrough in hydrogen fuel cells: enhancing macroscopic mass transport properties by tailoring the porous microstructure

Objectif

Given their high conversion efficiency and zero-emission characteristics, hydrogen fuel cells are extremely attractive for replacing current energy conversion and power generation technologies. Nevertheless, they still need significant technological improvements in order to increase their competitiveness in the mobility and energy conversion market. More to the point, nowadays, the increase of the effective gas-liquid mass transport in the porous electrodes is highly demanded to improve cell performances.
The present proposal aims to investigate and improve the transport properties of two phase flows in hydrogen fuel cells porous materials with an innovative bottom-up approach: tailoring the porous microstructure in order to achieve the desired macroscopic feature, i.e. enhancing liquid water removal and promoting gas transport. The pore geometrical microscopic features (size, form, anisotropic structure) and the chemical behaviour of the pores surface (hydro -philic-phobic features) will be tuned and their effect on water imbibition, drainage and spatial and temporal distribution will be investigated by means of numerical simulations. An advancement in fuel cells technology is expected by characterising the optimal design of the porous electrodes which will significantly increase cells performances and open up a route for a new generation of fuel cells.

Régime de financement

MSCA-IF-EF-ST - Standard EF

Coordinateur

CHALMERS TEKNISKA HOGSKOLA AB
Contribution nette de l'UE
€ 173 857,20
Adresse
-
412 96 GOTEBORG
Suède

Voir sur la carte

Région
Södra Sverige Västsverige Västra Götalands län
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 173 857,20