Objective
Information and communication technologies are essential to modern society as the internet is pervading all aspects of our lives. Quantum mechanics imposes a fundamental limit to the communication rates. Determining this limit is one of the two challenges addressed by GENIUS. Given the amount of sensitive information sent through the internet, secure communications are essential to our society. To fulfill this need, the EU is investing in quantum key distribution (QKD) with the 1G€ Quantum Technology Flagship. The other challenge addressed by GENIUS is determining the maximum rate for secure communication that can be achieved by the forthcoming generation of QKD devices and proving their perfect security.
To address the above challenges, I will firstly apply methods from functional analysis to prove new fundamental entropic inequalities for quantum Gaussian channels. Quantum Gaussian channels provide a mathematical model for the propagation of electromagnetic signals. Entropy is the core of information theory and quantifies the information content of a system. These inequalities will determine the maximum rates allowed by quantum mechanics for communication and QKD. Secondly, I aim to propose and prove a new fundamental entropic uncertainty relation for the heterodyne measurement. This uncertainty relation will prove the perfect security of the most promising QKD protocol. These new insights will have an enormous impact on both quantum communication and quantum cryptography and will stimulate what will be the first realization of quantum devices capable of communication and guaranteed perfectly secure QKD at the maximum possible rates. The experience of my supervisor Prof. Solovej in functional analysis and entropic inequalities combined with the experience of my co-supervisor Prof. Christandl in quantum cryptography make the QMATH group the ideal environment for carrying out this project and establishing myself as a leading independent multidisciplinary researcher.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet
- natural sciences physical sciences quantum physics
- natural sciences computer and information sciences computer security cryptography
- natural sciences mathematics pure mathematics mathematical analysis functional analysis
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.