Objective
The goal of MachineCat is to obtain fundamental insights into machine learning methods applied to computational chemistry problems.
Machine learning methods can be used to reproduce the predictions of highly accurate electronic structure calculations at only a fraction of the original computational cost. As a consequence, it becomes possible to simulate chemical problems usually beyond the capabilities of standard computational chemistry methods. However, a routine application of machine learning methods in computational chemistry is made difficult by their inherent black box nature.
MachineCat will illuminate this black box by using state-of-the-art analysis techniques to gain a deep understanding on how these learning machines operate. Based on these insights, MachineCat will then systematically improve existing machine learning methods for computational chemistry. To this end, an organocatalytic conversion reaction of carbon dioxide will be investigated. This class of reactions is highly relevant for sustainable chemistry, as it offers cheap access to value-added chemicals, potentially replacing fossil fuels as primary carbon source. By studying one particular carbon dioxide conversion reaction with machine learning methods, MachineCat will not only push the limits of these methods, but also provide a detailed mechanism for the reaction under study for the first time. MachineCat will then use this information to rationally design improved catalysts for the conversion reaction.
The researcher will gain expertise in modern machine techniques and transfer expertise in computational chemistry to the host. The networks of researcher and host will profit from two interdisciplinary workshops. MachineCat will prepare the researcher for an independent career, providing him with a unique research profile, excellent teaching and presentation skills, strong management capabilities, extensive experience in public engagement and dissemination, and a wide scientific network.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural scienceschemical sciencescatalysis
- engineering and technologyenvironmental engineeringenergy and fuels
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EFCoordinator
10623 Berlin
Germany