Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Fatigue damage at mesoscopic level. Fatigue life prediction in conjunction with acoustic emission signals

Objective

Fatigue is the primary damage mechanisms of structural components that usually occurs in three stages: crack initiation, growth of short cracks and growth of long cracks. At macroscopic level, the fatigue damage of materials and respectively failure of structural components, is influenced by the loading mode, geometry, material properties and environment. There are many factors to be taken into account and implicitelly this falls upon the prediction level. Passing to mesoscopic level, the loading mode and geometry effects are included on the stress and strain state and the prediction of fatigue damage depends by the interaction between the stress and strain state and respectively the crystallographic characteristics of material grains. Therefore, it is expected that the prediction level of fatigue damage to be higher and this is confirmed by the studies already initiated. This project proposes an extension of mesoscopic level studies for real loading cases characterized by multiaxial stress and strain states. To analyze the interaction between the multiaxil stress and strain state and crystallographic characteristics of material grain, the project involves both numerical analyzes using submodeling technique and experimental techniques for monitoring the fatigue damage. Acoustic emission technique will be primarily used and simultaneously deeply explored. The purpose of using this technique is to establish clear connections between the mechanisms that generate acoustic signals and the fatigue damage at mesoscopic scale. As the results of this interdisciplinary research consists on the one hand the development of a new concept for fatigue life prediction based on the physical degradation mechanisms of the materials. On the other hand, the investigation results in the development and improvement of the acoustic emission technique, already known as one of the most promising techniques of Structural Health Monitoring.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

CARDIFF UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
RESEARCH SERVICES C/O MAIN BUILDING
CF10 3AT CARDIFF
United Kingdom

See on map

Region
Wales East Wales Cardiff and Vale of Glamorgan
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0