Objective
Fatigue is the primary damage mechanisms of structural components that usually occurs in three stages: crack initiation, growth of short cracks and growth of long cracks. At macroscopic level, the fatigue damage of materials and respectively failure of structural components, is influenced by the loading mode, geometry, material properties and environment. There are many factors to be taken into account and implicitelly this falls upon the prediction level. Passing to mesoscopic level, the loading mode and geometry effects are included on the stress and strain state and the prediction of fatigue damage depends by the interaction between the stress and strain state and respectively the crystallographic characteristics of material grains. Therefore, it is expected that the prediction level of fatigue damage to be higher and this is confirmed by the studies already initiated. This project proposes an extension of mesoscopic level studies for real loading cases characterized by multiaxial stress and strain states. To analyze the interaction between the multiaxil stress and strain state and crystallographic characteristics of material grain, the project involves both numerical analyzes using submodeling technique and experimental techniques for monitoring the fatigue damage. Acoustic emission technique will be primarily used and simultaneously deeply explored. The purpose of using this technique is to establish clear connections between the mechanisms that generate acoustic signals and the fatigue damage at mesoscopic scale. As the results of this interdisciplinary research consists on the one hand the development of a new concept for fatigue life prediction based on the physical degradation mechanisms of the materials. On the other hand, the investigation results in the development and improvement of the acoustic emission technique, already known as one of the most promising techniques of Structural Health Monitoring.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology civil engineering structural engineering structural health monitoring
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CF10 3AT CARDIFF
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.