Objective
Nature is by far the most versatile chemist and modern research efforts have harnessed the power of Nature by using biomolecules such as proteins as building blocks or targets for various technological applications. In many cases the immobilization of a protein in a synthetic matrix is essential. In particular protein-porous material hybrids have received much attention but their preparation have been non-trivial, often limited by the size compatibility between the pore and the protein and the surface properties. The quest for a suitable protein-matrix combination not only requires extensive synthetic optimization, but also the development of appropriate methodologies that can be used to determine the effect of the matrix on the structure and stability of the protein. In this multidisciplinary action, the stabilities, structures and dynamics of heme proteins (globins) immobilized in mesoporous silica or titania will be studied by EPR. This class of hybrid materials are themselves also of great interest because of potential electrochemical biosensing and biocatalysis applications. Novel orthogonally spin-labeled globins will be prepared and incorporated into (modified) mesoporous silica and titania. Pulse dipolar spectroscopy will be used to measure nanometric distance constraints within the free and immobilized globins. Combined with computational models, these measurements will provide unique insights into effects of incorporation on the tertiary structures and conformational flexibilities of the proteins. This action will not only result in the development of a generic analytical toolbox, based on spin-label EPR, for the characterization of proteins immobilized in matrices, but also lead to advances in the understanding and preparation of protein-porous material hybrids.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyenvironmental biotechnologybiosensing
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural scienceschemical sciencescatalysisbiocatalysis
- natural sciencesphysical sciencesopticsspectroscopy
You need to log in or register to use this function
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EFCoordinator
2000 Antwerpen
Belgium