Periodic Reporting for period 1 - NuWeld (Integrated Modelling and Analysis of Multiple Component Carbides in Welded hardfacings)
Période du rapport: 2018-10-01 au 2020-09-30
The interdisciplinary research is built on previous establishments from the team and project partners to advance the scientific understanding and development of an important material group based on advanced physical based modelling. The theories, advanced tool, new materials and data are transferable to other areas of materials and processing developments. Improvement of the structure and properties (either the primary carbides or the matrix) of the hardfacing to increase its wear resistance has a significant economic and social impact given its wide applications (e.g. efficient use of metal resources, competitiveness of industries and use of advanced technologies). Apart from the technical research and development, the project will continue to contribute to the global effort in applying data science in materials and processing innovation through data-driven and data-informed technologies.
The proposed project aims to investigate the crystal/lattice structure and properties of carbides in welded hardfacings and the mechanisms and technologies for carbide strengthening and refinement. One area is to investigate the effects of different solution elements including RE elements on the crystalline/lattice structure and properties of primary carbides using the first principle calculations; Another area is to develop materials with refined structures integrating ab initio evolutionary algorithm techniques and physical modelling. The project covers interdisciplinary work to develop new knowledge, technology development through research, training/knowledge exchange and collaboration.
Another area of work is combining materials discovery and composition optimisations which is a novel way for structure and property optimisation. One main achievement is the identification of compounds suitable to act the nucleation sites for austenite, ferrite and multicomponent carbides. Advanced program for materials discovery and interface program developed are used to streamline the data at different dimensions, linking large domain data to specific material application cases. A practical and economic procedure with different data setting within a product life cycle framework is developed linking composition design to the structure and performances of different carbides. The work also links physical modeling with engineering modelling (FE modelling), integrating in-depth understanding of the growth model of M7C3 carbides, nucleation, internal feature/defects to the behavior of the carbide under complex conditions in services.
The outcomes include fundamental theories, new materials and structure refinement mechanism, which opens up new areas in tailoring the trade-off between key properties. The work has made significant progress in research, career development for young researchers and enterprise activities. New materials with refined structure and enhanced balance between hardness and toughness is developed. Three major journal papers have been published/accepted for publications with two major papers are under review. The work was contributed to the workshop organized by the EU Materials Simulation Council and more than 5 conference presentations including two as keynote speeches. The work contributes to the international effort in developing data-informed and data-driven research in materials and processing.
The work has been shared at several platforms and events organised by leading policy making organisations (e.g. the European Materials Simulation Council). The extensive dissemination activities through publications, conferences, workshops, etc, have exposed the work to different audiences in R&D, industries, as well as policy makers. The project is a representative case for applying advanced modelling and data onto traditional industries with huge economic and environmental benefits. The project has been communicated with the general public and developed extensive education and training materials associated advanced alloy design, fundamental quantum mechanics, practical use of modern software. The link between physical modelling and engineering shared will continually contribute to global effort in applying data-driven or data informed approach in new materials discovery and development as well as education in STEM and general scientific development for society.