Objective
The emerging Compressed Sensing theory provides an entirely new perspective on the basic principles governing data acquisition, compression, and reconstruction. The main goal of this project is to understand the fundamental design principles and investigate the ultimate capabilities of Compressed Sensing techniques in wireless sensor networks. What distinguishes this project from prior related work is that it addresses large sensor networks that rely only on wireless interconnections and are subjected to arbitrary temporal and spatial variability (caused, e.g. by channel fading, addition/removal of nodes, node mobility, etc.). We propose an optimization-based methodology which integrates compressed sensing and wireless data transport into a unified optimization framework which will serve as the mathematical basis for a systematic design and, ultimately, will reveal the performance limits. This work will provide: 1) mathematical characterizations of the optimal tradeoffs between different fundamental performance criteria (e.g. energy versus sensing accuracy), and 2) practical algorithms and hierarchically structured network protocols (i.e. key enablers for Internet of Things (IoT) applications) able of handling large amount of data with lower energy and bandwidth consumption than in existing systems. The ultimate goal is to develop the foundations for a general theory of compressive sensing in wireless sensor networks which includes all aspects mentioned above. Such theory will have a breakthrough-making impact both through direct application on the wireless sensor networks, and in the science of network and data processing in other fields, including economics, transportation, biology, etc. From a career development perspective, the main goal is to strengthen the researcher’s interdisciplinary competence and research-leadership skills for pursuing the next level of career: becoming an internationally recognized, top-tier research leader in ICT.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing compressed sensing
- natural sciences computer and information sciences internet internet of things
- social sciences economics and business economics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
581 83 Linkoping
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.