Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Algebraic Geometry of Chemical Reaction Networks: Structural conditions for uniquely determined Sign-sensitivities.

Objective

Chemical Reaction Network Theory (CRNT) focuses on determining the dynamical behavior of a (chemical) reaction network from its structural properties. To this end, different approaches within different areas of Mathematics are employed. We use here an algebraic geometric approach: The evolution of the concentrations of the species is modelled by a system of ordinary differential equations (ODEs). Under mass-action kinetics, the ODEs are polynomial, and thus the relevant steady states are the nonnegative solutions of a system of polynomial equations, which can be regarded as the nonnegative part of an algebraic variety (involving unknown parameters).
This project addresses the problem of determining sign-sensitivities, that is, whether the concentration of one species at steady state increases/decreases after a perturbation is applied to the system. In particular, we wonder under which structural conditions are sign-sensitivities independent of the parameters of the system and of the original steady state.
The novelty of this proposal resides in that we do not aim at developing algorithms for finding sign-sensitivities, but at obtaining theorems that explain why and when some sign-sensitivities are uniquely determined. The results will allow potential users to manipulate large networks without knowing all the parameters and overcomes the uncertainty of current algorithms arising from having to choose parameter values.
I will use my background in Algebraic Geometry to begin a research career in Applied Algebraic Geometry. I will acquire new competences in interdisciplinary research and intersectorial transference of science, and improve my skills in communication and project management. I will work under the mentorship of Elisenda Feliu, in the group Mathematics of Reaction Networks. Due to their resources, experience and knowledge, they represent the perfect environment for the transition from Pure to Applied Mathematics, and in particular for my training in CRNT.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 200 194,80
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 200 194,80
My booklet 0 0