Objective
DNA replication is a fundamental biological process enabling the transmission of genetic information to progeny. In bacteria, its initiation involves a set of genes whose regulation is critical to ensure genome stability, both under optimal conditions and in response to environmental cues, including changes in nutrient availability. The highly conserved bacterial initiator protein DnaA has been proposed as a primary target for the nutritional control of DNA replication. Nevertheless, surprisingly little is known about the molecular mechanisms modulating its activity in response to nutrient limitation. Previous work showed that the synthesis and degradation of DnaA are both subject to control mechanisms that respond to environmental changes in the model organism Caulobacter crescentus. The 5’-UTR of dnaA mRNA was discovered to be required for the downregulation of the protein and the block of DNA replication initiation in response to nutrient depletions by a so far unknown post-transcriptional mechanism. Based on my preliminary in silico analysis I hypothesize that the 5’-UTR of dnaA can assume distinct conformations with different ribosome binding site accessibilities. Switching between these conformations is likely triggered by a trans-acting factor, either a small RNA, an RNA-binding protein or a metabolite, that is produced in response to nutrient availability. The present project proposal aims to elucidate the precise molecular mechanism underlying the post-transcriptional control of dnaA and to determine its consequences on DNA replication and cellular survival by combining classical biochemistry and genetics with cutting-edge molecular biology techniques. I expect that this work will contribute to the development of new strategies for bacterial growth control in industry and medicine. Importantly, the results of this study will provide key insights for the understanding of one of the most important biological processes: the regulation of DNA replication.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences molecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10691 Stockholm
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.