Periodic Reporting for period 1 - 3DPRINT-VASCU-CHIP (3D Printed Vascular Model-on-Chip Platform with Automated Customization)
Período documentado: 2018-05-01 hasta 2020-04-30
In this project, the overall objectives were to explore the potential of such methodology by developing a software tool that enables automated application-specific customization of the on-chip study platform and to utilize more complex and biologically relevant materials in the devices' fabrication. Other goals were to demonstrate the added value of the devices by comparison with well-established protocols/methods in the study of angiogenesis in high throughput screening settings, to assess the commercial viability of such an approach, and to pursue translation to the market.
- In collaboration with the University of Santiago de Compostela (Spain), various gel formulations, forming inner vessel-like architectures, were characterized in terms of their mechanical properties, while contained into microfluidic devices designed and manufactured by employing the BIOFABICS TOOLBOX. This enabled to screen and identify various suitable gel formulations which would be able to be employed in further biological studies within the developed microfluidic devices.
- In collaboration with University of Minho (Portugal), 3D biomodels were designed and manufactured employing the BIOFABICS TOOLBOX in order to generate physical replicas of blood vessels with varying degrees of stenosis. This enabled to study and compare the results from physical experimental tests with results from numerical (in silico) tests. Both visually and numerically, it was possible to assess in detail how the degree of stenosis affects fluid behavior properties of blood within stenotic vessels, such as flow turbulence, velocity fields, among others. This work originated two research articles. One was published in the journal Micromachines and the other one is currently under peer review.
- In collaboration with Stanford University (USA), the BIOFABICS TOOLBOX was also employed to design and manufacture devices which, in combination with hydrogel 3D bioprinting technology, were able to generate and maintain over time living functional 3D models of the blood-brain barrier. This work originated one research article which was published in the journal Frontiers in Bioengineering and Biotechnology.
Beyond the scientific activities, this project also allowed the researcher to further develop his skills and know-how regarding product/service development, translation of technology to market and management by attending highly reputed training programs and business acceleration programs. Furthermore, this project also enabled the generation of intellectual property which was duly registered for protection by official bodies.
Promotion of BIOFABICS’ technology has been achieved regularly via publication of scientific articles (both review articles and experimental articles), attendance and presentation in various conferences and meetings and interviews to various media outlets. The exposure provided by such dissemination and exploitation activities allowed the researcher and the company to be invited to take part in various initiatives. For example, the researcher became invited editor in the journal “Micromachines” and an expert evaluator for the European Commission as well as established new partnerships with multiple companies and academic/research institutions, which in turn resulted in the participation of BIOFABICS in various other EU projects.