Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Emulsions in Plant-based Edible Cellulose Microfibril Gels: Structure, Texture and Stability

Objective

This project aims to develop a new consumer acceptable all plant based solutions for stabilisation of edible emulsions, whose design is based on the fundamental understanding of the structure-stabilisation-flow properties of cellulose microfibril (MFC)-containing hybrid systems that are naturally found in plant cells. While there is much empirical knowledge about emulsion rheology and stability, the microscopic physical mechanisms that govern emulsion behaviour are still poorly understood, and in this particular case, for emulsions with a complexity that goes beyond the standard oil/water/surfactant systems. This lack of understanding greatly hampers the rational design of all plant structured emulsion-based products. To bridge this gap, we bring together a team of industrial and academic research groups with different, complementary expertise. By using high energy density processes for efficient deagglomeration of the CMF and proposing a new structuring approach through the continuous phase of the plant based emulsion, we will control emulsion stability. By combining macroscopic rheology and tribology with novel microfluidic tools and imaging techniques, we will establish the relation between the macroscopic flow behaviour and stability of the emulsions and the microscopic structure and interactions, and thereby increase our understanding of flowing emulsions beyond the current empirical models. It will help us to move further and provide a special focus on the mouthfeel of all plant structured emulsions. The prediction of mouthfeel texture attributes from rheology is crucial for the food industry to take a more systematic approach towards product design and optimization in order to meet consumers' preference is for natural, simple and flexible diets and other plant-focused formulations as closely as possible. The results of the project are translatable to other industries where emulsion formulation is required.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

UNILEVER INNOVATION CENTRE WAGENINGEN BV
Net EU contribution
€ 165 598,80
Address
BRONLAND 14
6708 WH Wageningen
Netherlands

See on map

Region
Oost-Nederland Gelderland Veluwe
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 165 598,80