In this project, the Fellow has collaborated with Dr. Sylvain Vedraine, Prof. Bernard Ratier (Plasmonic solar cell group, Xlim) and Prof. N. Yu (Columbia University, USA) and firstly designed a highly sensitive plasmonic metasensors based on atomically thin perovskite/graphene nanomaterials for the target sample solutions. The top layer graphene could insulate the 2D perovskite from oxygen and contaminations, and will also enhance the adsorption efficiency of the targeted biological molecules through pi-stacking forces. Through both numerical and analytical modeling, the Fellow has improved the phase singularity detection with the Goos–Hänchen (GH) effect. The GH shift is known to be closely related to the optical phase signal changes. And it is much more sensitive and sharp than the phase signal at the plasmonic condition while the experimental measurement setup is much more compact than that of the commonly used interferometer scheme to exact the phase signals. The atomically thin perovskite nanomaterials with high absorption rate enable the precise tuning of the depth of the plasmonic resonance dip. As such, one can optimize the structure to reach near zero-reflection at the resonance angle and the associated sharp phase singularity, which leads to a strongly enhanced GH lateral shift at the sensor interface. By integrating the 2D perovskite nanolayer into a metasurface structure, a strong localized electric field enhancement can be realized and the GH sensitivity was further improved. This result has been published in Nanomaterials-Basel. For the experimental demonstration of the tunibility of atomically thin 2D materials, the Fellow has collaborated with her colleague Dr. Aurelian Crunteanu (Leader of Microelectronics group, XLIM) and Prof. H.P. Ho (CUHK, Hong Kong). We fabricated an optimized multi-layered metallic sensing substrate based on 2D Ge2Sb2Te5 (GST) phase change nanomaterials (2 nm) and gold thin film (40 nm). Both the experimental and theoretical results show that the sensitivity in Goos-Hänchen (GH) shift has been greatly enhanced compared to pure gold substrate by more than one order of magnitude. Small biotin molecules with low concentrations ranging from 10 fM to 10 μM have been successfully detected. These results led to 2 CLEO-US conference papers and 3 journal articles have been published. In addition to the research work, during the project, the Fellow has also given oral presentations at International Conference (NanoP2018), Rome, 1-3 Oct, 2018 and MRS Fall, Boston (Nov 25-30, 2018) and have learned/exchanged plasmonic ideas with some of the distinguished professors and their group members, including Prof. Laura Na Liu (Max Planck Institute for Intelligent Systems), Stefan Maier (Universität München) and Javier Garcia De Abajo (ICFO, Spain). The Fellow has been invited to give a talk at 8th FOAN International Conference on Optics, Sarajevo Sep. 2019 and at SPIE-Photonics West, San Francisco, USA. Jan. 2019. She also has been interviewed through invitation and featured by: Nanowerk News.