Objective
Plant microbial fuel cells (PMFC) are promising electrochemical devices that can produce electricity generated by active microorganisms present in plant soil. The reactions at both anode and cathode of PMFCs can be catalysed by microbial biofilms capable of oxidising organic matter (anode) and catalysing oxygen reduction (ORR) (cathode) producing electrical power from renewable resources. However, PMFC power output to date remains low and often unpredictable due to the variability in activity achieved by the electrodes microbial biofilms. Their selection in both anode and cathode is a fundamental requirement to enhance catalytic activity and produce higher power densities. This proposal aims at developing a conceptually new approach towards PMFC catalysis though the introduction of novel nanocomposite carbon electrodes that will combine intrinsic and microbially-mediated catalytic activity. These functional materials will integrate moieties that promote bacterial recruitment to select suitable microbial consortia onto carbon based electrodes for both anodic and cathodic reactions. In the case of the cathode, the carbon material will be selected by using electrochemical methods ex situ (voltammetry) in simulated aqueous environment in the presence of fertilizers and soil to also display ORR catalytic activity. Anode and cathode topography will be investigated to identify nanostructures that promote biofilm colonisation and to control density and stability of active sites. The best electrode materials will be modified with carbohydrates and peptides that promote cell adhesion to only recruit electroactive bacterial consortia. This project combines my expertise in carbon synthesis and microbial fuel cell devices with expertise in biofilm control and carbon material characterization of the host laboratory. New training in characterization of electroactive biofilms will be provided by a secondment through a cross – European collaboration at University of Rennes1
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy planetary sciences planetary geology
- natural sciences biological sciences cell biology
- natural sciences biological sciences biochemistry biomolecules carbohydrates
- natural sciences biological sciences microbiology
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
D02 CX56 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.