Objective Flexoelectricity is the generation of electric polarization under mechanical strain gradient or mechanical deformation due to the electric field gradient (converse flexo). It is a more general phenomenon than the linear change in polarization due to stress, the piezoelectric effect. Flexoelectricity exists in a wider range of centrosymmetric materials especially nontoxic materials useful for biomedical application. It grows dominantly in energy density at submicro- or nanoscale enabling self-powered nano devices such as body implants and small-scale wireless sensors. Among the emerging applications of flexoelectricity, energy harvesters are the basic front devices of wide technological impact. Despite the advantages offered by flexoelectricity, research in this field is still in germination. Experiments are limited in measuring, explaining and quantifying some key phenomena. Materials engineering and engineering of strain are the key challenges to bring energy harvesting structures/systems to become a viable technology. Accomplishment of this task pressingly requires a robust modelling tool that can assist the development of flexoelectric energy harvesters. Hence, the aim of the project is to develop a computational framework to support the characterization, design, virtual testing and optimization of the next generation nano energy harvesters. It will be able to (1) predict the energy conversion efficiency and output voltage influenced by layout and surface effects of structures in 3D, (2) to virtually test the performance with various vibrational dynamic conditions, and (3) to break through current designs of simple geometry for flexoelectric structures by optimization considering manufacturing constraints. Innovative metamaterial/3D folding energy harvesters expectantly outperforming current piezoelectric energy harvesters of the same size will be manufactured and tested. Fields of science engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsnatural sciencesmathematicspure mathematicsgeometrymedical and health sciencesmedical biotechnologyimplantsengineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpiezoelectricsengineering and technologyenvironmental engineeringenergy and fuelsenergy conversion Keywords isogeometric analysis flexoelectric nano energy harvester piezoelectric nano device Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2018-STG - ERC Starting Grant Call for proposal ERC-2018-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER Net EU contribution € 1 499 938,00 Address Welfengarten 1 30167 Hannover Germany See on map Region Niedersachsen Hannover Region Hannover Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER Germany Net EU contribution € 1 499 938,00 Address Welfengarten 1 30167 Hannover See on map Region Niedersachsen Hannover Region Hannover Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00