European Commission logo
English English
CORDIS - EU research results
CORDIS

Modelling the neuromusculoskeletal system across spatiotemporal scales for a new paradigm of human-machine motor interaction

Project description

Learning neuromuscular closed-loop control for better neurorehabilitation

Neurological injuries leave millions of people disabled, and motor recovery is often suboptimal. The impact of current neurorehabilitation machines is limited by the lack of knowledge of their physical interaction with the human body. The EU-funded INTERACT project aims to create multi-scale models of human–machine interaction for novel closed-loop control paradigms. Researchers will use recording and numerical modelling to decode the cellular activity of motor neurons in the spinal cord at a high resolution, aiming to demonstrate how motor dysfunction is repaired by inducing changes in neuromuscular targets. Learning to control the stimuli that govern neuromuscular function will enable machines to co-adapt with the human body and will promote the development of man–machine interfaces from neuroprostheses to robotic limbs and exosuits.

Objective

Neurological injuries such as stroke leave millions of people disabled worldwide every year. For these individuals motor recovery is often suboptimal. The impact of current neurorehabilitation machines is hampered by limited knowledge of their physical interaction with the human. As we move, our body adapts positively to optimal stimuli; motor improvement after stoke is promoted via physical training with an appropriate afferent input to the nervous system and mechanical loads to muscles. Loss of appropriate stimuli leads to motor dysfunction.
Motor recovery requires positive neuromuscular adaptations to be steered over time. If neuro-modulative and orthotic machines could be controlled to generate optimal stimuli to the neuromuscular system, a new era in neurorehabilitation would begin.
This project creates multi-scale models of human-machine interaction for radically new closed-loop control paradigms. We will combine biosignal recording and numerical modeling to decode the cellular activity of motor neurons in the spinal cord with resulting musculoskeletal forces at a resolution not considered before. This will enable breakthroughs for tracking the spinal-musculoskeletal system across spatiotemporal scales: short-to-long term adaptation from cellular to organ scales. We will use these concepts to design new machine control schemes. With a focus on spinal cord electrical stimulation and mechatronic exosuits, we will demonstrate how motor dysfunction is repaired by inducing optimal changes in neuromuscular targets. The innovative aspect is that of gaining control of the stimuli that govern neuromuscular function over time. This will enable machines to co-adapt with the body; an achievement that will disrupt the development of man-machine interfaces from neuroprostheses, to robotic limbs, to exosuits.
INTERACT will answer fundamental questions in movement neuromechanics via novel principles of human-machine interaction with broad impact on bioengineering and robotics

Host institution

UNIVERSITEIT TWENTE
Net EU contribution
€ 1 500 000,00
Address
DRIENERLOLAAN 5
7522 NB Enschede
Netherlands

See on map

Region
Oost-Nederland Overijssel Twente
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 500 000,00

Beneficiaries (1)