Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Simulated Majorana states

Objective

Quantum computation using topologically protected Majorana bound states is a promising direction towards scalable quantum architectures due to their inherent noise immunity provided by the nonlocal storage of quantum information. Thus far, Majorana states have mostly been investigated in superconductor-semiconductor heterostructures which rely on induced superconductivity in a quasi-one-dimensional conductor. However, despite tremendous efforts in material development, these devices are still limited by uncontrolled local fluctuations due to disorder and it is unclear if future developments will solve these problems. Furthermore, disorder may even mimic the transport signatures of topological ordering, hindering an unambiguous identification of the Majorana states.
Here I propose a way to overcome these limitations: I will work towards the direct quantum simulation of the one dimensional topological superconductor with Majorana bound states. I will use chains of semiconductor quantum dots, which is an emerging platform to simulate exotic many-body electron states. Building on this platform, I will be able to demonstrate for the first time the emergence of coherent, non-local superconducting states bound to the entire device similarly to the Kitaev chain model of topological superconductivity.
To demonstrate quantum coherence of the chain, we will build the first Andreev molecule quantum bit, which, while not topologically protected, will already combine advantages of superconducting and semiconductor qubits. Going one step further, we will investigate the simulated Kitaev chain. Upon establishing the presence of the simulated Majorana states, we will work towards a simple braiding protocol to demonstrate the non-Abelian nature of the edge modes.
This research direction, combining the scalability of semiconductor structures and the topological protection of Majorana states, will open new avenues towards universal quantum computation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

CHALMERS TEKNISKA HOGSKOLA AB
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 926 263,00
Address
-
412 96 Goteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 926 263,00

Beneficiaries (1)

My booklet 0 0