Project description
Improving deep learning research efficiency
Deep learning has offered significant advancements to modern society, with both a variety of tools and appliances in our everyday life, and industrial sectors utilising the multitude of features it provides. Unfortunately, despite the improvements, deep learning requires a lot of memory, computational power and energy from devices, which hinders its utilisation and further application in everyday tools. The EU-funded REDIAL project plans to change this by studying and overcoming this resource demand. To that end, the project researchers will utilise efficient training programmes and carry out further research on deep learning efficiency.
Objective
In just a few short years, breakthroughs from the field of deep learning have transformed how computers perform a wide-variety of tasks such as recognizing a face, driving a car or translating a language. Not only has deep learning become an everyday tool, it is also the most promising direction for tackling a number of still open problems in machine learning and artificial intelligence. However, routine deep learning activities (such as training a model) exert severe resource demands (e.g. memory, compute, energy) that are currently slowing the advancement of the field, and preventing full global participation in this research to only the largest of companies.
The goal of REDIAL is to solve core technical challenges that span the areas of machine learning and system research which collectively can enable a radical jump in the efficiency of deep learning. It aims to address both the challenge of high training costs and time, as well as the barrier to deploying models on constrained devices (like wearables, sensors) that currently require new efficiency techniques to be invented each time a deep learning innovation occurs. To accomplish this REDIAL takes two complementary approaches. First, it seeks to build a theoretical understanding of current approaches to deep learning efficiency, a desperately needed step given current over reliance on empirical observations. Second, it aims to develop new architectures and methods for training and inference that tackle core efficiency bottlenecks, such as: dependencies preventing parallelization and excessive on-chip data movement; while also opening new opportunities including the greater adoption of analog processing within accelerators. REDIAL aims to change the way the world trains its models, and deploys them to constrained devices, by producing a series of new deep architectures and algorithms with properties that promote high efficiency that can serve as a foundation for new machine learning innovation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.