Description du projet
Améliorer l’efficacité de la recherche dans le domaine de l’apprentissage profond
L’apprentissage profond a permis à la société moderne de faire des progrès remarquables, grâce à l’éventail d’outils et de dispositifs dont nous disposons au quotidien et aux secteurs industriels qui utilisent la pléthore de fonctionnalités qu’il offre. Malheureusement, en dépit de ces avancées, l’apprentissage profond exige des dispositifs très gourmands en mémoire, en puissance de calcul et en énergie, qui entravent son utilisation et son application dans les outils du quotidien. Le projet REDIAL, financé par l’UE, entend changer la donne en étudiant et en remédiant à cette demande de ressources. Pour ce faire, les chercheurs du projet utiliseront des programmes de formation efficaces et mèneront des recherches supplémentaires sur l’efficacité de l’apprentissage profond.
Objectif
In just a few short years, breakthroughs from the field of deep learning have transformed how computers perform a wide-variety of tasks such as recognizing a face, driving a car or translating a language. Not only has deep learning become an everyday tool, it is also the most promising direction for tackling a number of still open problems in machine learning and artificial intelligence. However, routine deep learning activities (such as training a model) exert severe resource demands (e.g. memory, compute, energy) that are currently slowing the advancement of the field, and preventing full global participation in this research to only the largest of companies.
The goal of REDIAL is to solve core technical challenges that span the areas of machine learning and system research which collectively can enable a radical jump in the efficiency of deep learning. It aims to address both the challenge of high training costs and time, as well as the barrier to deploying models on constrained devices (like wearables, sensors) that currently require new efficiency techniques to be invented each time a deep learning innovation occurs. To accomplish this REDIAL takes two complementary approaches. First, it seeks to build a theoretical understanding of current approaches to deep learning efficiency, a desperately needed step given current over reliance on empirical observations. Second, it aims to develop new architectures and methods for training and inference that tackle core efficiency bottlenecks, such as: dependencies preventing parallelization and excessive on-chip data movement; while also opening new opportunities including the greater adoption of analog processing within accelerators. REDIAL aims to change the way the world trains its models, and deploys them to constrained devices, by producing a series of new deep architectures and algorithms with properties that promote high efficiency that can serve as a foundation for new machine learning innovation.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- ingénierie et technologie génie électrique, génie électronique, génie de l’information ingénierie électronique capteurs
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-STG - Starting Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2018-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
CB2 1TN CAMBRIDGE
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.