European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

3D integration technology for silicon spin qubits

Description du projet

Construire un ordinateur quantique de 100 qubits

Les ordinateurs quantiques pourraient révolutionner la façon dont nous résolvons les problèmes d’informatique dure qui s’avèrent impossibles avec les ordinateurs classiques. Le projet QUCUBE, financé par l’UE, prévoit de développer un processeur quantique en silicium qui prendra en charge au moins 100 bits quantiques (qubits), actuellement une première en termes de nombre de qubits. La réussite du projet reposera sur de nombreuses avancées technologiques, notamment une architecture 3D spécialement conçue pour accueillir les dispositifs de détection de charge nécessaires à la lecture des qubits et les lignes de porte métallique pour le contrôle et les mesures électriques, ainsi que la mise en œuvre de schémas de correction d’erreurs quantiques.

Objectif

Originally conceived to describe the microscopic world of atoms and elementary particles, the theory of quantum mechanics has eventually served to predict macroscopic phenomena, e.g. the electrical and optical properties of semiconductors, resulting a wide range of technological applications that have changed our way of living. Foundational properties like quantum superposition and entanglement, however, have remained essentially unexploited. Their use may allow achieving computational powers inaccessible to classical digital computers, opening unprecedented opportunities.
In a quantum computer, the elementary bits of information are encoded onto two-level quantum systems called qubits. Since qubits interact with the uncontrolled degrees of freedom of their environment, the evolution of their quantum states can become quickly unpredictable, leading to a reduced qubit fidelity. In topological quantum computing schemes, e.g. the surface code, the reduced fidelity is compensated by using decoherence-free logical qubits consisting of a large number (~103) of entangled physical qubits. As a result, a useful quantum processor should host at least millions of qubits. Although dauntingly large, this number is still small as compared to the number of transistors in a modern silicon microprocessors.
QuCube leverages industrial-level silicon technology to realize a quantum processor containing hundreds of spin qubits confined to a two-dimensional array of electrostatically defined silicon quantum dots. To face the challenge of addressing the qubits individually, we use a three-dimensional architecture purposely designed to accommodate, on separated planes, the charge sensing devices necessary for qubit readout, and the metal gate lines for the electrical control and measurement. The gate lines are operated according to a multiplexing principle, enabling a scalable wiring layout. We shall implement fault-tolerant logical qubits and quantum simulations of complex Hamiltonians

Régime de financement

ERC-SyG - Synergy grant

Institution d’accueil

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Contribution nette de l'UE
€ 10 980 316,25
Adresse
RUE LEBLANC 25
75015 PARIS 15
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 10 980 316,25

Bénéficiaires (2)