Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Disruptive targeted drug delivery system via synergistic combination of intelligent DNA molecular machines and gated mesoporous nanoparticles

Project description

Targeted drug delivery with the aid of nanotechnology

Chemotherapeutic drugs are characterised by off-target effects in healthy tissues and often lower biodistribution in the tumour. The EU-funded SMARTRIOX project has developed a nanoparticle-based system that can be programmed to deliver the required drug to its target. This specificity is based on DNA molecules that respond to certain stimuli within target tissues and release the drug. Researchers will use this system for the treatment of triple negative breast cancer, an aggressive and difficult to treat type of breast cancer. The main advantage of the system is that it can be tailored according to patient needs at the hospital, offering an easily accessible means of drug delivery.

Objective

Although there are Triple Negative Breast Cancer (TNBC), the most aggressive type of Breast Cancer (BC), accounts for 15-25% of all BCs. Yearly 200,000 women are diagnosed with TNBC, of which 100,000 are diagnosed with metastatic disease at the primary diagnosis. TNBC lacks a recognized molecular target, making it an orphan disease: no effective treatment is available to date. The poor prognosis of patients suffering from TNBC makes it extremely challenging for both oncologists and patients. TNBC is more aggressive because all its receptors (Estrogen/Progesterone/Herceptin) are negative, and targeted and endocrine therapies are not helpful. TNBC shows a shortened disease-free interval in the neoadjuvant and adjuvant settings and a more aggressive course in the metastatic setting.The mainstay treatment for TNBC is Doxorubicin, a potent anthracycline chemotherapy, which nonetheless, has substantial toxicities (cardiac, immune, digestive and epithelial) that limit its maximal dose and render the tumour cells resistant to it. As a result, patients cannot be treated with a high enough and effective dose.In response, Triox Nano has developed TXN770: an innovative bionanoparticle based anticancer treatment. TXN770 has a DNAzyme machine cap that recognizes cancer cells and releases the chemotherapy exclusively inside them, responding to pre-programmed threshold levels of Mg2+ and ATP that are present primarily at the target TNBC cells. This allows using 4 times lower concentrations of Doxorubicin, which in turn causes less side effects and achieves a higher effectiveness. It also prevents cancer cells from becoming resistant to Doxorubicin.TrioxNano will address a BC world market of $10.4 billion, expected to grow to $17.2 billion in 2021. TrioxNano projects €547M in profit, with a ROI of €15 per euro invested in the project and in turn will help ease the economic burden of TNBC in National Health Services while positioning itself as a leading company in treatment of TNBC.

Call for proposal

H2020-EIC-SMEInst-2018-2020

See other projects for this call

Sub call

H2020-SMEInst-2018-2020-2

Coordinator

TRIOX NANO LTD
Net EU contribution
€ 1 993 367,25
Address
ROKACH SHIMON 4
9518705 Jerusalem
Israel

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 2 847 667,50