Project description
Boosting receiver sensitivity for free-space optical communications
Free-space optical communications use light propagating in free space to wirelessly transmit data. The technology can be used for communication over short and long distances, for example between spacecraft or satellites. However, the technology sensitivity is limited by diffraction, which causes a free-space beam to divert as it travels from the transmitter to the receiver. The EU-funded FREESPACE project aims to overcome this drawback by adding a noiseless optical amplifier to the receiver. This technique is expected to extend transmission reach by 40 %, reduce the aperture size of the optics at the transmitter and receiver and increase communication system capacity.
Objective
Free-space optical communication links provide higher capacity and smaller beam divergence than their radio-frequency counterpart, and are increasingly being used for relatively short links often established for temporary purposes (e.g. outdoor sporting and concert events). They are also explored for extremely long reaches (e.g. between satellites, to the moon and beyond). In both cases, the sensitivity is fundamentally limited by the effect of diffraction, which results in the divergence of a free-space beam as it travels from the transmitter to the receiver. As there are practical limits on the size of the aperture permitted at both the transmitter and receiver, the diffraction results in a signal loss that limits the capacity and reach of the link. Our approach, which is to implement a unique noiseless optical amplifier in the receiver, is expected to result in a 40% transmission reach extension, or for a given reach target, reduce the aperture size of the optics (significant cost reduction) and increase the capacity. Our technique will help enable the transition from radio-frequency links to lightwave based links as it add significant performance benefits to the latter approach. We wish to use our new knowledge and expertise from our recent ERC AdG project to demonstrate, verify, and explore the commercial prospects of FSO transmission using phase-sensitive amplifiers in the receiver to improve the sensitivity, thus maximizing the possible link power budget, beyond what is possible with today’s approaches. We will work on market evaluation, technology verification, and commercialization strategy with the support from the Chalmers innovation office on our campus which has expertize on commercialization in the early stage. A goal of this project is to reach an agreement with commercial and/or institutional entities to pursue a field test of the PSA-based FSO technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.