European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

PlAsmon InduceD hot Electron extraction with doped semiconductors for Infrared solAr energy

Descripción del proyecto

Mejora de la eficiencia de conversión de la luz infrarroja en energía

La luz infrarroja representa aproximadamente la mitad de la energía solar que llega a la superficie terrestre. Con todo, los rayos solares infrarrojos atraviesan normalmente los materiales fotovoltaicos que constituyen las celdas fotovoltaicas. El objetivo del proyecto financiado con fondos europeos PAIDEIA es mejorar la conversión de la energía solar en la región infrarroja del espectro. Para ello, se emplearán nanocristales semiconductores dopados que poseen una respuesta plasmónica ajustable en el rango de 800-4 000 nm. Se probarán tres arquitecturas diferentes a fin de desarrollar un dispositivo de celda fotovoltaica de alta eficiencia. En último lugar, el proyecto se propone desarrollar una celda fotovoltaica en tándem que combine la eficiencia de conversión energética convencional de una celda fotovoltaica de silicio comercial con el nuevo dispositivo que planea crear en pos de lograr una eficiencia de conversión de la energía solar del 30 %.

Objetivo

Earth is inhabited by an energy hungry human society. The Sun, with a global radiation at the ground level of more than 1 kW/m^2, is our largest source of energy. However, 45% of the total radiation is in the near infrared (NIR) and is not absorbed by most photovoltaic materials.
PAIDEIA focuses on two main advantages aiming to enhance the capacity of solar energy conversion:
i) plasmon assisted hot carriers extraction from NIR plasmonic materials;
ii) linewidth narrowing in plasmonic nanoparticle films that enhances the lifetime of hot carriers and, thus, boosts the efficiency of light driven carrier extraction.
Instead of metals, which operate mostly in the visible region, we will make use of doped semiconductor nanocrystals (DSNCs) as hot electron extraction materials possessing a plasmonic response tunable in the range 800 nm – 4000 nm. Three different innovative architectures will be used for improved device performance: i) improved Schottky junctions (DSNC/wide band gap semiconductor nanocomposites); ii) ultrathin devices (DSNCs/2D quantum materials); iii) maximized interface DSNC/semiconductor bulk hetero-Schottky junctions.
By combining both concepts in advanced architectures we aim to produce a solar cell device that functions in the NIR with efficiencies of up to 10%. A tandem solar cell that combines the conventional power conversion efficiency, up to ~1100 nm, of a commercial Si solar cell (~20%) with the new PAIDEIA based device is expected to reach a total power conversion efficiency of 30% by extending the width of wavelengths that are converted to the full spectral range delivered by the Sun. PAIDEIA has a deeply fundamental character impacting several areas in the field of nanophysics, nanochemistry and materials processing and, at the same time, having a high impact on the study of solar energy conversion. Finally, PAIDEIA will provide answers to the fundamental questions regarding the physical behaviour of plasmonic/semiconductor interfaces.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

POLITECNICO DI TORINO
Aportación neta de la UEn
€ 519 000,00
Dirección
CORSO DUCA DEGLI ABRUZZI 24
10129 Torino
Italia

Ver en el mapa

Región
Nord-Ovest Piemonte Torino
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 519 000,00

Beneficiarios (2)